
POTENTIAL THEORY IN

THREE DIMENSIONS

The theory of the preceding chapter, when generalized to three or more

dimensions becomes considerably complicated. The development of this

theory during the 19th century was motivated to a considerable extent by

physical intuition. The study of fields of force and velocity of fluid flows

led to the theorems on integration in severable variables which are in this

chapter. More modern expositions of this material lean heavily on algebraic

developments of the late 19th and early 20th centuries. Although the

mathematics has significantly improved with the introduction of the notions

of differential forms and invariance, the intuition provided by concrete

interpretations has been lost. We shall lean heavily on the interpretation

by fluid flows, thereby sacrificing some mathematical rigor for a little bit of

concreteness. We certainly should point out that the importance of the

subject of differential forms by far transcends its use in putting the divergence

theorem on firm ground. This theory has had major impact on all branches

of modern research mathematics and physics. We have however selected to

complete our story rather than begin to suggest a new one.

A fluid flow is given by a function {x0 , t) defined for x0 in some domain

D in R3 and t on an interval in R about the origin. We require that

(i) <J> is continuously differentiable in all variables,

(ii) <t>(x0 , 0) = x0 ,
all x0 e D,

(iii) for fixed t, the transformation x0 -> <Kx0 , 0 is one-to-one and has a

nonsingular differential.
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612 8 Potential Theory in Three Dimensions

The value (b(x0 , r) represents the space position at time t of the particle

which was at x0 at time t = 0. We shall refer to x0 as the particle coordinate

and to x = <|)(x0 , /) as the space coordinate. Condition (ii) asserts that the

particle and space coordinates coincide at t
= 0. Condition (iii) asserts that

the relation between particle and space coordinates at any time t is invertible:

we can recapture the initial position of a particle from its position at any

time. We shall denote the inverse of <|> by \|/ : x = <t>(x0 , t) if and only if

x0
= \(>(x, t).
The curve given by x = c/>(x0 , t) is the path of motion of the particle x0 . The

velocity of x0 at time / is, of course, {dfy/dt)(x0 , t). If we fix the time t,

the collection of velocity vectors forms a field, denoted by v(x, t) (referring of

course to spatial coordinates) called the velocity field of the flow. v(x, t)

is the velocity of the particle at x at time t. We have already noted that

d<t>(x0 , 0
v(x, 0 =

dt
xo

= <l>(x. ') (8.1)

If the velocity field is independent of time, we say that the flow is steady.

The velocity field of a flow completely determines the flow : the path of

motion x = u(?) of a particle x0 is the solution of the differential equation

t-
= v(u, f)

dt (8.2)

o(0) = x0

By (8.1) the solution is given by u(0 = <j>(x0 , t), for (8.1) can be rewritten as

3<p(x0 , t)
v(<Kxo,0,0 = -

dt

Thus the equation of flow is recaptured from the velocity field by solving

Equation (8.2).
This introduction recapitulates what we have already learned about fluid

flows. In the subsequent section we shall develop the mathematics required

to study the evolution through time of a given mass of fluid. We shall see

that the various laws of conservation of physics (mass, energy) correspond

to mathematical theorems (divergence theorem, Stokes' theorem).
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8.1 Divergence and the Equation of Continuity

Let us begin with a fluid flowing through a domain in R3 according to the
equation x = <b(x0,t). According to reasonable physical assumptions, if
we define the density at a point p as the limit

. .

,
. mass A

Kp) = hm -

A-p vol A

as the domain A shrinks uniformly down to p, then the mass of any domain
is given by integration of the density function p. In our case, that of a fluid
in motion, we shall express the density of the fluid at the point x at time t
as p(x, t). Thus, for any domain D, the mass of fluid in D at time t is

f p(x, 0 dV

We can also consider the density at a particle: p((p(x0, t), t) is the density
of the fluid at time t at the particle (originally at) x0 . (More generally, we
always have this option of referring measurable quantities to either the spatial,
or the particle coordinates. This option is a source of some confusion, as
well as deepening, of our understanding.)
The law of conservation of matter asserts that the mass of a given object

is independent of time. If we fix a domain D, the space occupied at time t

by the fluid originally in D is the domain D, = {t>(x0, /): x0 e D}. The

mass of fluid in Dt is

f P(x, 0 dV
JDt

Since mass must be conserved, this must be independent of t. Thus the

law of conservation of mass can be expressed by this equation :

d_
dt

f p(x, t)dV = 0 (8.3)
JD,

for any domain D. We would prefer to state this as an equation involving
functions of points, rather than domains. In order to do that we must know

how to carry through the differentiation implied in (8.3). The problem with
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(8.3) is that we have a variable domain of integration. This can be solved

by replacing that integral by one over D. We shall now briefly interrupt
this discussion with a description of the formula for change of variables in

an integral. This will allow us to compute (8.3).

Suppose now that we are given a one-to-one transformation y
= F(x) of a

domain D onto a domain A. We assume that F is continuously differen-

tiable, and its differential is everywhere nonsingular. We shall require also

that dF(x) is orientation-preserving : that is, that it maps the standard basis

Ejl -> E2 -> E3 into a right-handed system. Writing x = (x1, x2, x3),

y
= (y1) y2, j3), the image of E( under the linear transformation d{x) is

just (d'Fjdxi)(x). Thus we require that

5F 5F 5F

be a right-handed system, which is the same as asking that

d(yl, y\ v3) /5F dF 8F \

With these hypotheses we have the following formula for integration under

the change of variable F. If/ is an integrable function on A, then

J/(y)^
= //(F(x))det|^^ (8.4)

We shall defer the derivation of this formula to the end of this section. The

motivating idea is that it is true in the small: if the function /is constant, and

the transformation F is a linear transformation, and D is a rectangle, then

(8.3) just says that the volume of the parallelepiped F(D) is det F vol(D)

(an easily verified fact). The general case follows by locally approximating

by this case and summing over the whole domain.

Examples

1. Find \Bx2y* dV, where B is the unit ball. We use spherical
coordinates for this computation :

x = r sin 6 cos <fi y
= r sin 9 sin cj> z = r cos 9

.,, -. /sin 9 cos <f> r cos 9 cos <p r sin 9 sin cj> \

,,

' '

,^

= I sin 9 sin <p r cos 9 sin <f> r sin 9 cos <f> \
K*'0' \ cos 9 -sin 9 0 /
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so

d(x, y,z)
det ^ ^rr

= r sin 0

3(r, 9, cj>)

f x2};4 dJ/ = f [ f r8 sin6 0 cos2 0 sin5 </> Jr d</>
'B 'o J-ti 'o

= [ r8 dr f cos2 0 sin5 4> d$ \ sin6 0
J0 J-Jt Jo

d0

J0

_

1 16 In
_

In
~

9

'

l05
'

16
~

945

2- JD(*2
- ^2) dx dy, where D = {0 < x < 1, x - 1 < y < x} be

comes

z Jo Jo

,1 1 1

, ,
uv du dv =

2 J0

under the change of variable u = x y, v
= x + y.

3. JB(x2 + y2 + z2) <^x i/v dz, where B is the domain

B={x2 +y2< l,0<z<2}

This can be easily computed in cylindrical coordinates :

f (x2 + y2 + z2)dxdydz=\n \ f (r2 + z2)r d9 dr dz

=27t({r3+r)dr
_

19n

We return to our fluid flow given by x = <Kx0 , 0- We saau express it, for

the sake of compution, in coordinates :

(x1, x2, x3) = <b(V,V. V, 0 (8-5)
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Since (8.5) reduces to the identity for t = 0, we have

d{xl, x2, x3)
= 1

6{Xq , Xq , x0 )

Thus, the determinant

d(xl, x2, x3)

(8.6)

J((x0) = det

0{Xq , Xq , Xq )

is positive for all small t , so we can apply the change of variable formula to

the computation of (8.3) for fixed small /. We now have the mass con

servation law expressed by

0=jtL p(x' dv =

e L p((Kx ' ' t)Jt dv =L it {pJt) dv

(The final equation follows since differentiation under the integral is now

allowable.) Since this must be true for every domain D, the integrand is

identically zero :

dt
{pjt) = 0 (8.7)

We can explicitly compute that derivative for t = 0, using (8.6). First,

let us consider

dt
J,

_d_ d{x\ x2, x3)

dt O(X0 , Xq , Xq )
(8.8)

r = 0

The determinant is the usual sum of products of the various partial derivatives

8x'/dx0J. The derivative of such a product will have three terms; in each

one of which only one term is differentiated with respect to t. Each term is

of the form

diyds1) ! = 0

5T2

ds2
r = 0

dr3

5s3
(8.9)

where {r1, r2, r3} is a permutation of {x1, x2, x3}, and {s1, s2, s3} a permuta^
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tion of {x0\ x02, x03}. According to (8.6)

dr dr
= 0 if s # r0

ds
( = 0 d~s

= 1 if s = r
( = 0

Thus the only relevant terms (8.9) are those where y2 = r02, s3 = r03 and, a

fortiori, sl = r0K Finally, by the equality of mixed partial derivatives,

d_ / &c|_\ _ _d_ /axj\
dt W07 ,=0

~

dx0l [it)
dv'

(=o dx0

where v = (v1, v2, v3) is the velocity field of the flow (recall Equation (8.1)).
Thus, the computation of (8.8) is complete: there are only three relevant

terms, for r1 = x1, x2, x3, respectively, and we have

d

dlJ'
dv1 dv2 dv3

+ ^^ +

(=o dx0 dx0 dx0 r = 0 (8.10)

Definition 1. Let v = (u1, v2, v3) be a differentiable vector field defined in a
domain in R3. The divergence of v is the function defined by

div v = > -.

& dx1

The name will appear presently to be justified. We now summarize our

discussion in the following assertion.

Proposition 1. (Equation of Continuity) Let v(x, t) be the velocity field of a

fluidflow, andp(x, t) its density. The law ofmass conservation takes thisform :

dp dp
3

dp
-

+ div(pv) = -+l>^ + pdivv = 0 (8.11)

Proof. Referring to the preceding discussion we have seen from (8.7) that the

law of mass conservation asserts that

8t
{p{4>{Xo,t),t)J,{Xo))=0
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for all t, x0 . Evaluating at t = 0, this becomes

0
_

8

Jt{Xo)\t=o

(8.12)

8(
(p(<J>(Xo , t), /))|.-o /o(Xo) + /s(*(Xo , 0, 0)

^
Jr.(Xo)l = o

= 2 ^(xo,0)5-(x0,0)+ J(xo,0) + p(xo,0)divv(xo,0)
1 = 1 Sx' 8t ot

The second expression follows from our computation above terminating in (8.10),

and the fact that /0(x0) = 1
, x0

= <t>(x0 , 0). Now, we could have started our clock

at any time; there is nothing special about the time t = 0 except that our formulas

are most easily computed there. Thus, (8.12) must hold for all (x, 0 since it is

valid for all (x0 , 0). Thus (8.1 1) is true. We leave the first equality as an exercise.

Equation (8.11) can be referred to the particle coordinates of the motion:

dp

dt

3

dx\ dp

x = (t>(x0,r) i=l Ot OX
x = <t>(x0,t)

dx
+ p(<p(x0 , t), t) div (x0 , 0 = 0

which compresses into

-

p(<Kx0 ,0,0 + p(Kxo , 0, 0 div (x0 , 0 = 0 (8. 1 3)

This relates the time rate of change of density at a particle with the rate of

change of its position. A fluid flow is called incompressible if the same mass

always occupies the same volume. For an incompressible fluid flow we

must therefore have that jDt dV is constant for any initial domain D. Thus

Sx,

dt JDt dt JD JD dt' JD
(8.14)

for every domain D. Thus div v = 0 is the necessary and sufficient condition

for a flow to be incompressible. By the equation of continuity (in the form

(8.13)) this is the same as asking that the density at a particle is also in

dependent of time.

Corollary 1. v is the velocity offlow ofan incompressible fluid if and only

if div v = 0.
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Corollary 2. The fluid is incompressible if and only if the density at a

particle is constant under all flows of the fluid.

Now the integral \D div v dV is the rate of expansion of the fluid in D,

according to our computation (8.14). (Hence, the name divergence.) We

could also calculate the "infinitesimal expansion" of D by calculating the

amount of fluid which enters during an
"

infinitesimal
"

amount of time, and

subtracting from it the amount of fluid that leaves. The mathematical

expression of this will be an integral over the boundary of the domain D.

The fact that this is the same as \D div v dV is the divergence theorem, which

is a fundamental fact in calculus. We shall return to this theorem and

its implications in Section 8.5.

Examples

4. Consider the flow given by the equations

x = x0(l + 0 + 0>o y
= J'oCl

- 0 + tx0 z = z0e'

If D is the original position of a mass of fluid,

A = {(*o(l + 0 + ty0, >'0(1
- 0 + tx0 , z0 e') ; (x0 , y0 , z0) e D}

and the volume of D, is

f dv=ttetJKx'y-z\dv
Jot jd d(x0 , y0 , z0)

= f e'(l - 2f2) dV = e'(l - 22) vol(D)

Since vol(Dt) = \d div v dV for every domain D, we have

dt

div v(x, r)4 e'(l ~ 2'2) = W ~4t~ 2'2)
ot

5. For this flow:

x = x0e' y
=

y0e
'

z = z0e' + x0(l
- e')
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we have

dx
T~

= (-*o e ,

~~

y e
, Z0 e

~

x0 e )

so v(x, 0 = (x, y,z xe ') and div v = 1. Thus, for any domain

D, (5/50 vol(A) = 1 vol(A), so vol(Z),) = e' vol(>). If p(x, 0 is the

density function at time t, the equation of continuity allows us to

find p in terms of its initial values. Let p(x0 , 0) = p(x0) be given.

Then, according to (8.13), if p(x0 , t) is the particle density, we have

dp

^ + p-l = 0

p(x0 , 0) = p(x0)

Thus

p(x0 , 0 = P(x0)e-' p(x, 0 = e-'p(xe-', ye', z - x(e"' - 1)0

6. Suppose an incompressible fluid flows steadily in the direction

a = {a1, a2, a3). That is, the path lines are parallel to the vector a.

Then the speed is constant along the paths. For the velocity field is

v(x, 0) = 0(x)a

where cj> is a scalar function (the speed), and since v is divergence free,
we have

div v = |4 fll + |^ "2 +S fl3 = 0
5xx 5xz 5xJ

But then

#(x)(a) = <Vtf>(x), a> = 0

for all x, so cj) is constant along the lines parallel to a; but these are

the paths of motion.
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Integration Under a Coordinate Change

Theorem 8.1. Let (u, v, w) = F(x, y, z) be an orientation-preserving change

of coordinates valid in the domain D in x, y, z space. Let A = {F(x, y, z) :

(x, y, z) e D}. If g is a function continuous on D, then

c c d(x v z")
g(x, y, z) dx dy dz = g(F~\u, v, w) det ,

' ' '

du dv dw
jd ja d(u, v, w)

Proof. The proof consists in a series of reductions terminating in the one-

variable case. It is enough to show that for any point peZ), this theorem is true

for some rectangle centered at p. For, once this is shown, we may cover D by

finitely many such rectangles RU...,R. If {pi, . . .
, pn} is a partition of unity

subordinate to {Ri, ..., R}, then pt g is zero outside Rt . The theorem is thus

true for each pi- g. Summing over j, we obtain the general result.

Thus we may concentrate our attention on a particular point p0 in D, which we

take to be the origin. If the theorem is valid for the coordinate changes u = F(x),

y
= G(u), then it is also true for the composed mapping y = G(F(x)), simply because

8{x\ x2, x3) 8{x\ x2, x3) 8{u\ u\ u3)

8{y\y\y3)
=

8{u\ 2, 3)

'

{8y\y2,y3)

We will decompose our mapping into a composition of four special cases, for each

of which the theorem is easy. The general result will follow by composing these

mappings.

First of all, let T be the linear mapping

8{x, y, z)
W

8{u, v, w)
(x)

(U, V. w) = 0

Then F = (F T) T"1 and F T has the property that its Jacobian at 0 is the

identity. The theorem is easily seen to be true for a linear mapping (Problem 5), so

we need only prove it for FT.

Our situation is now this: we are given a change of coordinates {u,v,w) =

G(x, y, z) defined at the origin such that

8{u, v, w)'

>)=I0(x, y, z)

It follows that

8{u, y, z)

3(x, y, z)

8{u, v, z)

8{x, y, z)

(0) = I

(0) = I
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Thus, by the inverse mapping theorem there is a neighborhood B of 0 in which

(x, y, z), {u, y, z), {u, v, z), (, v, w) are all bona fide orientation-preserving coordinate

systems. If we denote the respective coordinate changes as follow

Fi(x, y, z) = (, y, z)

F*{u, y, z) = (, v, z)

F3(, v, z) = (, v, w)

then F = F3 F2 Fi. Each F< changes only one coordinate at a time, and we need

only to prove the theorem for each F( . Since the proof of each case is the same,

we shall do it only once.

Now, here we do our computation. Let

u = h{x, y, z)

v=y

w =z

be a coordinate change defined on a rectangle

R = {-a^x<a, -b<y<,b, -c<z<c)

centered at the origin. Let

A = {{u, v, w): u = h{x,v, w),a<,x<a, b<v<b, c^w<c}

If now g is a continuous function on R,

J g{x, y, z) dx dy dz = j J j g{x,y,z)dx dydz (8.15)

Now, according to the theorem of change of variable in one dimension

g{x, y, z)dx=\ g{h~l{x, y, z, v, w)) (, y, z) du
J -a JH-a.y.z) OU

Thus (8.15) becomes

r" rc [ (<-> 8h~l ]
g{h '(, v, w, v, w)) (h, v, w) du dv dw

J-b J-c LJli(-a,i,,w) OU J

= 9{h~l{u, v, w, v, w)) det -. . du dv dw
J* {u, V, w)
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The last equation follows from

Idh 8h 8h\

o{u, v, w)

S(x, y, z)

dx dy

0

8z

0

so

(8{x,y,z)\ j J8{u,v,w)\-i (8h\-1
^(*^))-(*^)) =\Fx)

8h'1

8u

EXERCISES

1. Compute the area of these domains, using either spherical or cylin

drical coordinates :

(a) y2 + z2 :xyz

(b) 1 >x2 + y2-z2>0

(c) x2 + y2 < z < 1

(d) a2x2 + bV + c2z2 < 1

2. Integrate / over the domain Z>:

(a) f{x)=x2y2z' D={x2 + y2 + z2<l}

(b) f{x)=xyz D={x2 + y2<\ 0<z<l}

(c) f{x)=x2+y2-z2 D={a2x2 + b2y2<l 0<z<x2 + y2}

(d) /(x) = / sin2 0 cos2 < Z = {0<x(x2 + ^2 + z2)<l}

3. What is the mass of a parabolic section:

0 < z < a{x2 + y2)

whose density is proportional to the distance from the xy plane?

4. Find the mass of the ball of radius 1, whose density is p(x)=(l + r)_1.

5. Let

x = x0 + ty0 y=yoe' tz0 z = z0 e
'

+ fx0

be the equations of a flow in space.

(a) Compute the velocity field v(x, t).

(b) Compute the divergence of the flow.

(c) Assuming an initial density function which is constant, find the

density function p(x, t).

(d) What is the mass of the fluid in the unit cube at time t = 1 ?

6. Which of these fluid flows is incompressible?

(a) v(x, /) =( z, x, y)

(b) v(x, 0 = (*2
- x2, z

-

y, z)

(c) x=x0e' + (l-0.>'o,J'=}'oe-*'2 + (l-Ozo,z
= e-"2zo

(d) x = x0cosf + ;y0sin/ y
=

y0 cos t x0 sin / z = azo(l + 0

(e) v(x, 0 = C* cs ', *.y sin r> ze')
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1. Find the volume at time t = 1 of the mass of fluid originally in the unit

sphere under these flows:

(a) Exercise 6(a). (b) Exercise 6(c). (c) Exercise 6(d).

8. Show that a C2 function in R3 is harmonic if and only if it is the

potential of the vector field of an incompressible flow. {Hint: div V/= A/.)

PROBLEMS

1 . A radial field is a field of the form

v(x) = ^(l|x||)x

Find all incompressible radial fields.

2. If L is a line in R3, a flow around the axis L is one whose velocity field

at any point is tangent to the cylinder with central line L. Show that the

flow of Exercise 6(d) is a flow around the z axis. Find another such flow

which is incompressible.
3. Find the incompressible flow whose path lines are the curves

x = x0 + u y
=

y0 + sin u z = z0

4. Find the incompressible flow whose path lines are the curves (in

cylindrical coordinates)

z = o--1 e = 0O

(see Figure 8.1).

5. Prove Theorem 1 for the coordinate change u = T(x), where T is a

nonsingular linear transformation.

6. In the proof of Theorem 1, a function

u = h{x, y, z)

was found. It was tacitly assumed that 8hj8x > 0. Why is that so ?

Express 8h~1j8u in terms of the original functions (, v, w) = G(x, y, z).

8.2 Curl and Rotation

The divergence of the velocity field of a flow measures the rate of expansion
of the fluid in flow as we have seen. We shall now compute an indicator of

its rotation around a given axis. Suppose

x = <t>(x0,0 (8.16)
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Figure 8.1

is the equation ofmotion of the flow. Let x0 be any point, and n a direction

(unit) vector at the point x0 . We shall compute the average angular velocity
in the plane orthogonal to n at the point x0 in terms of the velocity field v.

We take x = 0 for convenience. Since we are interested in the motion around

the axis n, relative to the motion of 0, we must work in coordinates relative

to 0. What is the same, we shall subtract from the above motion a motion

of translation by the image of 0, so that 0 remains fixed. Since translation

involves no rotation, our computation will be valid for the original motion.
Thus we replace (8.16) by the flow

x = x|/(x0 , 0 = <Kx0 , 0 = <K0, 0 (8.17)

so that in our new motion the origin is fixed.

Let Cr be a circle of radius r centered at 0 lying in the plane IT(n) orthogonal
to n. Let a be a point on Cr . After a time t, the particle originally at a has

moved to \|/(a, 0- Let L be the projection of \|/(a, 0 a onto the line tangent
to Cr at a (see Figure 8.2). Let 9{t) be the angle at 0 in n(n) between a and

a + L. Thus 9{t) is the angle in the plane orthogonal to n through which a
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Figure 8.2

has moved (relative to 0) during the time t. Thus

fl,rt -XL . _t<x|/(a,Q-<|/(a),T>
9{t) = sin = sin

when T is the unit tangent vector to Cr at a. Dividing by t and letting
t -> 0, we obtain the angular velocity for the particle a in Il(n) as

(-.-'?)
L

t=0 (l-fL/r2)1'2

= <v(a,0)-v(0,0),T>

f(a,0),T

according to (8.17). The sum over all of Cr of this angular velocity is called

the total circulation of the flow about Cr and is denoted circ(Cr). Thus

circ(Cr) = j <v(a, 0)
-

v(0, 0), T> ds (8.18)

This number, calculated for small r gives us some idea of the instantaneous

rotation of the flow around n at 0. If we suitably normalize ((8.17) tends

to zero as fast as r - 0), and take the limit as r -> 0 we will have the same kind

of information, but it will be given by a point function, rather than a function

of circles.

Definition 2. Let v be the velocity field of a flow in a domain D. For

each point x0 in D, and unit vector n define the curl of the flow about n at x0



to be

i / > i- circ(C-)
curl v(x0 , n) = hm ~
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(8.19)
r-o r-

where Cr is the circle of radius r centered at x0 in the plane orthogonal to n.

Example

7. Consider the flow (Figure 8.3)

x = x0 cos / + y0 sin / y
=

y0 cos t
-

x0 sin t z = z0 + t

Let us take x0
= (1, 0, 0) and n = E3 . Then, as we have already seen

v{x,t) = {y, -x, 1)

Figure 8.3
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If we take

Cr = \x 1 + r cos-, y
= r sin -, z = 0

r r

then

;irc(Cr) = j <v(x) -

v(l, 0, 0), T> ds

= I / I r sin r cos-, 0 J, (-sins, cos s, 0)\ ds

= f *(-r>i0= -27ir2

Thus the xy plane rotates around (1, 0, 0) in the negative sense (with
constant angular velocity), as t changes. If now we take n = E1; we

have

Cr = !x = 1, y = r cos-, z = r sin-
l r ?",

circ(Cr) = I / I r cos -

,

- 1, 1 J, 1 0, -

r sin -

,
r cos

-

J ) ds

= 0

Thus there is no rotation in this plane.

Now, we shall compute the curl explicitly in terms of the velocity field v.

Again take x0 = 0 and let a =(a1, a2, a3), p = (/J1, jS2, /J3) be two unit vectors
in the plane orthogonal to n so that a - p - n is a right-handed orthonormal

basis. Thus n = a x p, so

n = (a2/?3 - a3/?2, a3^1 - a1^3, a1^2 - <x2pl) (8.20)

For a time we shall compute relative to this basis. Cr has this parametriza-
tion

s s

x = x(s) = r cos
-

a + r sin - p (8.21)
r r
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The tangent vector is

s s

T(s) =
- sin - a + cos

-

P
r r

Expanding the velocity field in terms of this basis :

v(x, 0)
- v(0, 0) = v"{x)a + t>"(x)p + t;"(x)n

Then

circ (Cr) = J" <v(x, 0)
-

v(0, 0), T(x)> ds

Cr

= ft- V{x{s)) sin
- + v\x{s)) cos - j ds (8.22)

Now, substitute 9 = s/r in the integral and approximate the v" (v = a, /?)

by their differentials:

v\x{9)) = vv{0) + dv\0){x{9)) + e\\\x\\)

where

||x||-V(x)->0 as ||x|| ->0 (8.23)

Since t>v(0) = 0, using (8.21) for x{9), we have

t>v(x(0)) = r cos 9 dv\0){a) +rsin9- <fov(0)(P) = ev(||x||)

Substituting these expressions into (8.22), we obtain

,.2*

>decirc (C,) = f [- dv*{0){<*) + du"(0)(p)]r2 cos 9 sin 9 ,

Jo

+ f "[-dt)"(0)(p) sin2 9 + dv\0){a.) cos2 9~\r2 d9
JQ

r2n

+ (-a(x) cos 9 + e"(x) sin 9)r d9
JoJo

= 7tr2[-rfi>'(0)(p) +M0)()]

+ r \ *[-e"(x) cos 9 + e"(x) sin 0] d9
Jn
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Dividing by nr2, and letting r -> 0, the second term disappears because of

(8.23) and we obtain

curl v(0, n) = dv\H>){<) - <foa(0)(P) (8.24)

This can be rewritten in terms of the vector n. Let v = (v1, v2, v3) in terms

of the standard Euclidean coordinates. Then

v*{x, 0) = <v(x, 0)
- v(0, 0), > = [V(x, 0) - i>;(0, 0)]a;

so

dC(0)(p)= I^o1
i=l OXJ

Similarly,

dv\){)=i^

(8.24) can be expanded out as

3 dv' 3 dv1

curlv(0,n)=I^aT-I^^
3 dv1 . .

i= i dx3

2 fl.,3x ,^3 gpl

Referring back to (8.20) we see that this is the inner product of a vector

derived from v with the given unit vector n. We collect these results in a

definition and a proposition.

Definition 3. If v = (v1, v2, v3) is a vector field defined in a domain in

R3, we defined the vector field curl v by

/dv2 dv3 dv3 dv1 dv1 dv2\ ,

curlv=l^-^'^-ax^-^j (8>26)



8.2 Curl and Rotation 631

Proposition 2. // v is the velocity field of a fluid flow, the curl of v at x0
around the direction n at time t is given by curl <v(x0 , 0, n>.

Proof. Equation (8.25) is just <curl v, n>.

Definition 4. A flow with velocity field v is called irrotational if curl v = 0.

Examples

8. Let v(x) = {-y, x, 1) (as in Example 6). Then

curl v = (0,0, -2)

Thus for any plane n = {p: <p -

x, n> = 0} through x, the rotation

in that plane has angular velocity -2<n, E3>. Thus the maximum

rotation is about the z axis.

In general, curl v(x) spans the axis of the
"

infinitesimal
"

rotation about

x and its magnitude is the angular velocity.

9. Let

X = x0{l + t) + y0{l - e') y
= y0e-' z = z0(l + t)

be the equations of a flow. The velocity field is

thus

-e'-(2 + 0e2'\

cu,1,(,,,0=(0.0.-''-1^)
so again the rotation at any point is about the z axis. Notice that the

equations break down at t = 1 . We can consider that as the initial

point of the motion : the fluid came, at t
= - 1 spinning off the xy

plane with infinite angular velocity.

The form of curl v recalls the discussion of closed and exact forms in the

previous chapter. If we consider the differential 1-form co = <v, dx}

associated to the vector field v, then curl v = 0 is the necessary condition for
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co to be the differential of a function (and by Poincare's lemma it is locally

sufficient). In particular, if the field is conservative, then the flow induced

by the field is irrotational.

We can make physical sense of this statement by referring it to the

acceleration field a = d\/dt of the flow rather than the velocity field. By

Newton's law this is essentially the field of forces which generates the flow.

As we have seen, if this field is conservative, then the work done by the flow

in moving a mass from one point to another is precisely what is needed; it

is the same as the change in energy level. For this to be the case no work

can be expended in wastelessly rotating the mass ; hence the field is irrotational.

In the theory of electromagnetism the existence of two fields, the electric

E, and the magnetic H, is postulated. Certain relations between these

fields, corroborated by experimental evidence form the basic laws of the

subject. These are Maxwell's equations. Two of these are

5H
curl E + a = 0, div H = 0

dt

{cr a suitable constant), which state that the rate of change of the magnetic
field is determined by the rotation of the electric field, and that the

"

mag

netic flow" is incompressible.
Here are several important relations between the gradient, curl, and

divergence which are easily derived.

curl V/= 0 (8.27)

div curl v = 0 (8.28)

div V/= A/ (8.29)

curl/v =/curl v + Vf x v (8.30)

div(/v)=/divv + <V/,v> (8.31)

Example

10. Suppose

A = {-x,0,y)

is the acceleration field of a fluid in motion. Find the equations of

motion, assuming an initial velocity field of (0, 1,0), and find the

divergence and curl of the flow.
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If x = <b(x0 , 0 is the equation of motion, we have

<b(x0 , 0) = x0

deb

-^(x0,0)
= (0,1,0)

and <b(x0 , /) solves the differential equation

{x,y,z)" = {-x,0,y)

The general solutions are

x = A0 cos t + B0 sin t

y
= Ai+ B^

z = A2 + B2t + ^-t2 + -jt3

The initial conditions give these as the equations of motion:

x = x0 cos t

y
=

y0 + t

t2 t3
z = *o + y0

2
+
y

The velocity field is

V(x, 0 = (-xtanr, \,ty)

divVfx, 0 = -tan/

curlV(x,/)=(-/,0,0)

Notice that at / = n/2 the holocaust arrives. Before that moment,

our fluid is moving generally in the positive y direction, rotating

clockwise around the line parallel to the x axis and spinning away

from it (/ < 0) and back again toward it when / > 0.
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EXERCISES

9. Compute the curl for these fluid flows:

(a) x = x0 + 0>o y=y0e' tz0 z = z0e~' + tx0

(b) v{x,y, z) = {-z, x,y)

(c) v(x, y, z) = {y, z, x)

(d) The flow described in Exercise 6(b).

(e) The flow of Exercise 6(c).

(f ) The flow of Exercise 6(e).

10. Verify Equations (8.27)-(8.31).
1 1 . Find the equations of motion and analyze the flow as in Example 8

given this acceleration field and initial velocity :

(a) \ = {-y,x, 1) V(xo)=0

(b) A = (x, z, x) V(x0) = (0, 0, 1)

12. Compute the rotation at x0 about the E2 axis for the flow of Ex

ample 6.

PROBLEMS

7. Suppose we are given a time-independent field of forces F in a medium

of constant density (say = 1 ). ByNewton's law the fluid will flow according

to the equation F = A. Let D be a small ball of fluid. The kinetic energy

of D at time / is

z f llv||2rfK
Z- Jd,

where v is the velocity field of the flow. Show that the work done by F in

moving D to Dk is equal to the change in kinetic energy. {Hint :

0/g,(||v||2) = <v,F>.)

8. Verify these identities :

(a) curl gVf= Vg x V/

(b) curl/V/=0

9. Show that if u, v are curl-free vector fields, then u x v is divergence

free.

10. Show that in a ball, a vector field is a gradient if and only if its curl

is zero.

1 1 . Let M be a 3 x 3 matrix, and consider the flow

x = exp(M0x0

(a) Compute the divergence and curl of the velocity field of the flow.

(b) Show that the flow is divergence free if and only if tr M = 0

(c) Show that the flow is curl free if and only ifM is symmetric.



8.3 Surfaces 635

12. Consider the flow

x = exp(M/)x0

where M is a symmetric matrix

(a) Show that the velocity field of the flow is conservative and has

the potential function

n(x)=-<Mx,x>

(b) Show that the flow in an eigenspace with eigenvalue a is in a

straight line either toward the origin {a < 0), or away from the origin

(>0).

(c) Diagram the flow lines for such a flow in the plane in case the

eigenvalues (i) are the same; (ii) have the same sign; (iii) have opposite

signs.

8.3 Surfaces

A surface in R3 is (as we have been using the notion in this text) a subset

of R3 which is two dimensional. By this we mean that every point has some

neighborhood which can be put into one-to-one correspondence with a

domain in the plane. We shall assume that this correspondence is smooth.

It is given by a continuously differentiable mapping with a nonsingularity
condition on its differential.

Definition 5. A surface patch in R3 is the image of a domain D in R2

under a map x = x{u, v) with these properties :

(i) x is one-to-one.

(ii) x is continuously differentiable.

(iii) The vectors dx/du, dx/dv are independent at every point, {u, v) are

called the parameters for the surface patch. The curves u = constant, and

v = constant are called the parametric curves.

A surface is a set I in R3 which can be covered by surface patches, that

is, every point p on has a neighborhood N such that Z n N is a surface

patch.

Notice that if we fix u = c, then the function J>(t?) = x(c, v) parametrizes a
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curve (since <b is also one-to-one and

d<b dx

dv dv

is everywhere nonzero). The vector dx/dv is thus the tangent vector to the

parametric curve u = constant. Condition (iii) asks that the curves u = c,

v = c' at any point have independent tangents. Another way of phrasing

(iii) is that the 2x3 matrix

du

dx

w

has rank 2.

Examples

11. The sphere: x2+}>2 + z2 = l (Figure 8.4). Near the point

(0, 0, 1) we can write z as a function of x and y on the plane: z =

(1 x2 j2)1'2. Thus we can use x, y to define a surface patch

surrounding (0, 0, 1) :

x = x{u, v) = {u,v,{l-u2- v2)112)

Figure 8.4
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Figure 8.5

which coordinatizes the upper hemisphere as u, v range through the

disk u2 + v2 < 1 . Since

dx

x
= = (i,o, -(i- 2-2r1/2)
du

x
= ^ = (0,l, -V(l-u2-v2)-"2)

dv

these vectors are independent. Every point on the sphere can be put

in such a surface patch, by permuting the roles of (x, y, z) above.

For example, the point ( 1
, 0, 0) lies in the surface patch given by

x = x{u, v) = (-(1 - u2 - v2)1'2, u, v) u2 + v2 < 1

Spherical coordinates can be used to coordinatize the whole sphere

except for the points (0, 0, 1):

x = x{9, d>) = (cos 9 cos d>, cos 9 sin <f>, sin 9)

12. The ellipsoid (Figure 8.5)

a2x2 + b2y2 + c2z2 = 1

is also easily parametrized by spherical coordinates (again except for

z= +C"1):

(cos
u cos v cos u sin v sin u\

a

'

b ,_W
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Figure 8.6

13. The paraboloid z = x2 + y2 (Figure 8.6) is a surface patch: it

is coordinated by

x = x(u, v) = {u, V, U2 + V2)

Since x
= (1, 0, 2u), xv = (0, 1, 2v), they are independent.

14. The cone z = (x2 + y2)112 (Figure 8.7) can be coordinatized,

except for the vertex, by

x = x(u, v) = (, n, {u2 + v2)1'2 u # 0, v # 0

We might ask if there is any way to coordinatize a neighborhood of the

vertex of the cone. It is quite difficult to show that there exists no function

which does so, but there is one important implication of the differentiability
of such a function which is easy to check out. The differentiability implies

good approximability by linear functions, thus we should anticipate the

existence of a linear surface (a plane) which comes "nearest" the surface at

a given point. This is the tangent plane; which we shall now describe by

limiting arguments as in the case of the tangent line to a curve.

Suppose p is a point on a surface and q, r are two nearby points. The

three points p, q, r (in general) determine a plane. As q, r tend to p, this

plane will (in general) attain a limiting position: this is the tangent plane.
We now compute this process with coordinates. Suppose the function

x = x(w* , u2) , {u1 ,u2)eD coordinatizes Z near p. Wemay assume p
= x(0, 0) =

0. Let q
= x{u\ u2), r = x{vl, v2). The plane Il(q, r) through p, q, r is then
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the set of all vectors perpendicular to

q x r = x{ul, u2) x x{v\ vz) (8.32)

In order to take the limit we approximate x by its differential

x{u\ u2) = Xl(0V + x2(0)m2 + (||u||)

where /
"

*e(0 - 0 as / -? 0. Equation (8.32) becomes

q x r = (Xl(0) x x2{$j){ulv2 - hV) + R (8.33)

where we have combined all the error terms in the expression R. The

important behavior of R is this:

R(u, v) = ||u|M||v||) + ||v||82(||u||) + 83(||u||)b(||t||)

where the 8f all have the same behavior: /_1(0 - 0 as / -* 0.

Now, so as to treat the remainder R as an insignificant remainder, we must

be careful with the term ulv2 -u2vl. It may, for example, be zero, in which

case the remainder becomes very significant. Thus we must assume that

Figure 8.7
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this terms tends to zero more slowly than R as q, r - p. Since

wV-wV = sin((||u||X||v||)

it suffices to assume that the angle between the coordinate vectors does not

tend to zero as q, r -> p. Then, under this assumption, we can divide (8.33)

by u^v2 wV, obtaining n(q, r) as the plane through p orthogonal to the

vector

Xl(0) x x2(0) + R1

where R1 -* 0 as q, r -* p. Thus the limiting position of LT(q, r) is the plane

orthogonal to {dx/du1) x {dx/du2) at p: it is the plane spanned by

Definition 6. Let p be a point on a surface Z coordinatized by x = x(m1, u2).
The tangent plane to X at p is the plane spanned by the vectors dx/du1, dx/du2
at p.

Proposition 3. Let j>be a point on the surface Z, and let Il(q, r) be the plane

spanned by two points q, r on Z so that the angle between q p and r p is

nonzero. If q, r - p so that this angle remains bounded away from zero,

then II(q, r) tends to the plane tangent to Z at p.

Of course the angle assumption is crucial, Problem 28 exhibits the difficulty
obtained without it.

Examples

1 5. There is no tangent plane to the cone

z = {x2 + y2)1'2

at its vertex (Figure 8.7). For, if we take qx
= (/, 0, /), q2 = (0, /, /),

the plane spanned by qx and q2 is the plane spanned by (1,0, 1),

(0, 1, 1) for all / -> 0. Thus this is a candidate for the tangent plane.

However, if we consider now the points qt = ( /, 0, /), %2 = (0> U 0

for / > 0, the candidate we obtain is the plane spanned by ( 1, 0, 1),

(0, 1,1). Since these two planes are distinct, there can be no

tangent plane (Figure 8.8).
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Figure 8.8

16. The cylinder x2 + y2 = 1 is a surface. It can be coordinatized

by using cylindrical coordinates :

x = x{u, v) = (cos u, sin u, v)
x
= ( - sin u, cos u, 0)

x = (0, 0, 1)

The tangent plane at x{u, v) is the plane orthogonal to the vector

x x x
= (cos u, sin u, 0).

17. If x = x{s) is the equation of a curve, the
"

surface swept out"

by its family of tangent lines is a surface. It is parametrized by

x = x{s, t) = x(s) + /T(s)
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We have

x5
= T(s) + //cN(s) xf

= T(s)

Thus, so long as k # 0, s, t are patch coordinates for all s, t > 0. This

surface is called the developable defined by the curve. Its tangent

plane at the point {s, t) is the same as the osculating plane to the

curve at x{s).

Let Z be a surface, and p a point on the surface. We shall denote the

tangent plane to Z at p by T(p). If x = x{u, v) parametrizes Z in a neighbor
hood of p, with p

= x{u0 , v0), then the vectors dx/du{u0 , v0), dx/dv{u0 , v0)

span the plane 7Xp). The inner product on R3 induces an inner product
on this plane just by restriction. It will be valuable to us to see how to

express this inner product in terms of the basis xu , x . If t = axu + bxv is

a vector in T{p) its length is given by

||t||2 = <t, t> = fl2<x, x> + 2ab(xu, x> + 2>2<x, x>

Suppose that C is a curve on Z. Choose a parametrization of C:

x = g{s) 0^s<L (8.34)

Let {u{s), v(s)) be the (w, v) coordinates of g(s). Then (8.34) is the same as

x = x{u{s), v{s)) (8.35)

and by the chain rule, the tangent to C is

du dv
T = xu + xv-

ds ds

and

||T||2 = <x, x>(^)2 + 2<xu, x> f^ + <x, x>(^2 (8.36)

We shall use these following notational conventions relative to coordinates

onZ:

=<xu,x> F=<x,x> G = <x,x> (8.37)
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In terms of this notation we have this way, intrinsic to the surface, for com

puting the lengths of curves on Z :

Proposition 4. Let I. be a surface patch parametrized by x = x(, v).
Let C be a curve on Z parametrized by x = x{u{t), v{t)). a<t<b. Then

the length of C is

1/2

dt (8.38)
f\Jdu\2 Jdudv\2 ldv\2

J.Hsr) +2Fta*) +GU)
Proof. The length of C is

f IITIIA
Jb

which is, by (8.36), given by (8.38).

We shall adopt the convention (borrowed from the differential form

notation) that ds is the integrand which gives arc length along a curve. This

means just that the length of any curve C is Jc ds. According to (8.38) we

can be assured that

, \r,(du\2 nJdudv\ (dv\2V-12 ,

for any parameter / along C. We can also write this as

ds2 = Edu2 + 2F dudv + G dv2 (8.39)

Definition 7. The form (8.39), where E, F, G are given by (8.37) relative to a

parametrization x = x(u, v) on Z is called the first fundamental form of Z.

If Cu C2 are two curves given parametrically by

C\ : u = uy{s) v = vx{s)

C2:u = u2{s) v = v2{s)

then their tangents are

du! dvt
1

1
==

X r X
ds ds

du2 dv2
T2 = X""ds"

+
X""ds"
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At a point of intersection p the vectors ^(p), T2(p) lie in the tangent plane
at p and their inner product is

,, ,
. du* dui

<T1; T2> = E
l 2 ]7/du1 dv2 du2 dvA dvx dv2

\ ds ds ds ds j ds dsds ds

The curves are orthogonal at p if <T1; T2> = 0

Proposition 5. The parametric curves u = constant, v = constant on a

surface patch are orthogonal if and only ifF = 0.

Proof. The tangent line to u = c is spanned by x; the tangent line to v = c

is spanned by x. These lines are orthogonal if and only if <xu, x> = F= 0.

Examples

18. The plane z = 0. In the standard rectangular coordinates we

have ds2 = dx2 + dy2. If x =/(/), y = g{t), 0<s<L, is any curve

joining a to b we have (as in Chapter 5) the length ofL is

\\f\t)2 + g'{t)2T12 dt
Jn'o

If we parametrize this curve by x we obtain the length as

. 2-i 1/2

Ch dx

This is minimized when dy/dx = 0; that is, when the curve is a straight
line. This conforms with known facts.

19. The cylinder

x = x(w, v) = (cos u, sin u, v)

Here x
= ( - sin u, cos u, 0), x = (0, 0, 1). Thus E = 1 = G, F = 0,

so

ds2 = du2 + dv2

Again, the length of a curve given as v = v{u) is

fl"*
1/2

du
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so the curves of minimal length (called geodesies) on the cylinder are
those represented by straight lines in the u, v coordinates. Thus the

typical geodesic on the cylinder is the helix

x = (cos /, sin /, at)

20. For the sphere

x = x{u, v) = (cos u cos v, cos u sin v, sin u)

we have E = 1, F = 0, G = cos2 u. Thus

ds2 = du2 + cos2 u dv2

Once again, we discover the geodesies by minimizing the integral

\yds. Let a, b be two points on the sphere; by rotating the sphere
we may suppose that a, b lie on the longitude v = 0. If y is any curve

joining a to b, the length of y is

J ds = J {du2 + cos2 u dv2)1'2 (8.40)

The length of the longitude {u = 0) is

f {du2)112 = f du (8.41)
^a ^a

Now (8.40) is always larger than (8.41) unless dv = 0 along y; that is,

v is constant. Thus it is the longitude which is the curve of the

shortest distance between a and b. By rotating back again we con

clude that the geodesies on the sphere are the sections by diametric

planes: the great circles.

Geodesies

The problem of finding the geodesies on any surface is more difficult,

because the general form

Edu2 +2Fdudv + Gdv2

is harder to analyze. One way to proceed is to try to find coordinates so

that the first fundamental form looks like the above examples: it has the
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form

ds2 = du2 + G dv2 (8.42)

When this is the case we can verify that the curves v = constant are geodesies

(Problem 17). However, in order to find such coordinates, we must know

what we are looking for; that is, we must know how to find geodesies in the

first place. Thus, this line of reasoning has to be supplemented by the

discovery of a characteristic property of geodesies. We seek such a charac

teristic property by trying to understand the
"

infinitesimal
"

behavior of a

geodesic: this (we hope) leads to a differential equation which is solvable.

Then we can carry out our original plan: solving the differential equations
will provide a convenient coordinate system in which we can discover the

curves of minimal length. We shall, however, not carry through the entire

program here; we shall only derive the basic property.

If y is a geodesic, a curve of minimal length, on the surface Z, then,

relative to Z it is a straight line. That is, it would have to be as close to a

straight line as it could be : it should bend only as much as it must in order

to remain on Z. Thus the rate of change of the tangent, relative to Z, should

be zero. Infinitesimally this says that the normal to the curve has no com

ponent on the tangent plane to Z. We shall now show that a geodesic has

this property.

Theorem 8.2. Let y be a geodesic {curve of minimal length) on the surface
Z. Then, at any point p on y, the normal to y is orthogonal to the tangentplane

o/Z.

Proof. Let pey and let u, v be coordinates for near p so that p
= ((0), t>(0)).

We may choose these coordinates so that y is the curve v = 0 and so that the

coordinates are everywhere orthogonal (see Problems 9 and 10). Now let a be

small enough so that the interval from (a, 0) to {a, 0) in the uv plane lies on the

domain D of the coordinates. If r : v =/() defines a curve lying in D and joining

{a, 0) to {a, 0), then x = x{u,f{u)), a <Lu<a gives another curve on S, joining

two points of y (Figure 8.9). The length of T is no more than that of y, since y

is a geodesic.

Figure 8.9
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We have not yet done enough to investigate the local behavior of y; we must

consider a whole family of curves including y rather than just one other. But that

is easy to do : let T, be the curve parametrized by

T,: x = x(, //()) -a<u<a

for -1 < / <1. y is T0 and T is IV Let F(0 be the length of T,. Then F{t)

has a minimum at t = 0, so (if it is differentiable) F'{0) = 0. We now compute this :

F(/)=[ \\x + x.tf'{u)\\du
J
-a

is certainly a differentiable function of /, and

FV)=\ -\\xu + xvtf{u)\\du
1
-a
t

Now, at / = 0, the integrand is

-

<x + x //'(), x + x f/'()>"2 1.=0
ot

=

^ t-n 2<W(") + x/'(), x>
2 ||x||

= _ <*^> /() (8-43)
llxJI

The last equation follows from the assumption that the coordinates are orthogonal:

<x0,x> =0. First, the second term drops out, secondly, the expression (8.43)

derives from

8

0 = <x , x> = <x , x> + <x , xu>
8u

Therefore, from F'(0) = 0, we obtain

f'<E^p> f{u)d=oJ-a IIX.II

This equation must hold for all differentiable
functions/such that/(-a) =/()

= 0.

We conclude then that

<x,xM(>=0
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along y (see Miscellaneous Problem 41 of Chapter 2). Now, the normal N to y

is in the plane spanned by xu and xm. Since these are both orthogonal to x,

N _L x . Further, N is orthogonal to the tangent line of y which is spanned by x .

Thus N is orthogonal to both x and x ,
so is orthogonal to the tangent plane of S.

Examples

21. Find the geodesies on the surface

Z:j = x2

We parametrize Z by x = x{u, v) = {u, u2, v). Let u = u{s), v = v{s)

parametrize a geodesic T on Zt. Then T has the form

x = (u{s), u*{s), v{s))

and

xs
= (', 2mm', v')

xss
= N = (, 2{u')2 + 2uu", v")

For T to be a geodesic, this must be orthogonal to both

xu
= (1,2m,0) x

= (0,0,1)

Thus, the functions u{s), v{s) parametrizing the geodesic T satisfy these

differential equations

u" + 2u[_2{u')2 + 2mm"] = 0

v" = 0

Notice that from Picard's theorem the equations

m=-4m(')2
1+4m2

v" = 0

have unique solutions given the initial values of u, v, u', v'. Thus,

there exists a curve of minimal length in every direction, at every

point.
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22. Find the geodesies on the cone

Z:z2 = x2+j;2

Notice that any plane z + x cos a + y sin a = b intersects Z at right
angles (Figure 8.10). Thus the normal to the curve of intersection is
orthogonal to the surface, and such a plane always intersects Z in a

geodesic. More generally, we can compute the equations for any
geodesic using Theorem 8.2

Z: x = x(, v) = {v cos m, v sin u, v)

xu
= { vsinu,v cos u, 0)

x
= (cos m, sin m, 1)

Figure 8.10
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If m = u(s), v = v{s) parametrizes a geodesic T, then on T

xs
= {v' cos u vu' sin u, v' sin u + vu' cos u, v')

xss
= {v" cos m 2v'u' sin u vu" sin u v{u')2 cos u,

v" sin u + 2dV cos m + vu" cos m v{u')2 sin m, j;")

The differential equations are readily computed (and hardly solved

explicitly) by expressing <xss, x> = 0, <xss, x> = 0.

Surface Area

We would like now to define the area of a surface in a way analogous to

the definition of the length of a curve. We select a collection of points

xu . . .

, xk on Z and replace Z by the polygonal surface Z' whose vertices are

X[ xt. If the points xt, . . .

, xk are very numerous and close to each

other, then the sum of the areas of the faces of Z' is a good approximation
to the area of Z. We can then try to define the area of Z to be the limit of

such sums as the set of points xt, . . .

, xk becomes infinitely numerous and

everywhere dense.

Now this definition unfortunately does not work, there are ways of so

partitioning a surface so as to obtain any desired area (for a fuller account see

Spivak, pp. 128-130). Rather than give it all up as a hopeless task because

of this phenomenon, we try a different approach. First, we study the

approximation of area in the small.hoping to generate a plausible formula for

surface area (by plausible I mean that approximations to our formula are

also approximations to our notion of area). If the formula turns out to be

intrinsic, that is, independent of parametrizations, then it will define a relevant

measure, which we shall call surface area. Returning to the above
"

approxi-

Figure 8.11
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mation," let F be one of the faces of Z', and x0 one of its vertices. Let F0
be the projection of F onto Z (see Figure 8.11) and Ft the projection onto

the tangent plane T{x0). If the surface is very smooth, then for small F

these three surfaces have essentially the same area, and we can confuse the

three. We may suppose that F0 lies in a patch parametrized by x = x(m, v)
with x0

= x(m0 , v0). Let D be such that

F= {x{u,v);{u,v)e D)

Confusing the surface with F, we may take x to be the linear map

x{u, v) = x0+ xu(m0 , v0)u + xv{u0 , v0)v

Now, we know how to compute area on the image of a linear map:

area (F() = \\xu{u0,v0) x xv{u0,v0)\\ area D

This is true because it is true for rectangles, as we have seen in Proposition

28 of Chapter 1 . Thus, at least on this coordinate patch, the area of Z' is

very close to

Z ||x(m;, i>;) x xv{ut, vt)\\ area {Dt)

where the {>,} partition the coordinate domain D and (u,, vt) e >,. The

limit of such sums is

f ||x x xj du dv
JD

We take this to be the definition of surface area.

Definition 8. Let Z be a surface patch with coordinates u, v, ranging

through Din R2. The area of Z is

||x x xj du dv
>D

If Z is a surface, partition Z into pieces Du..., Dk such that each Dt is a

surface patch. Define

area (Z) = area {Dt)
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We must show that this definition is independent of the particular partition.

Proposition 6. The above definition is independent of the partition of Z

chosen.

Proof. Suppose we also partition S another way : H Ei u u E . Then

S = (fl,n Ei) u {Di n E2) vj u {Dk n E)

is still a third partition. Clearly,

area (E() = 2 area {Dj n ,) (8.44)

area {Dj) = 2 area {Dj n ,) (8.45)

since in each case we are computing relative to the same coordinates. We leave it

to the reader (see Problem 1 8) to verify that the computation of the area of Dj n Et

is the same whether it is done in the Dj or Et coordinates. Then, summing (8.44)
over i, and (8.45) over/, the right-hand sides are the same; and so are the lefts, as

desired.

In accordance with our convention to denote ds as the integrand for arc

length, we shall let dS denote the integrand for surface area. Thus, in terms

of any coordinate system u, v we have dS = H du dv, where H = ||x x x||.
It follows from Lagrange's identity (Chapter 1) that also H = {EG - F2)112.

Examples

23. Find the area of the sphere

{x2 + y2 + z2 = R2}

We use spherical coordinates:

x = {R cos u cos v, R cos u sin v, R sin m)

xu
= ( R sin u cos v, R sin u sin v, R cos u)

x
= ( R cos u sin v, R cos u cos v, 0)

so H = [EG
- F2]112 = R2 |cos u\. The area is

.71 -It/ 2

R2 cos u du dv = 4nR2
J
-it '-11/2
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24. The area of the piece of the paraboloid is

{z = x2+y2, 0<z<l}

The parametrization is

x = (/ cos u, r sin u, r)

xr
= (cos u, sin u, 1) x

= (-/ sin u, r cos u, 0)

= 2, F = 0, G = r2, H = 2r. The area is

In .1

2rdrd9 = 2n
'o 'o

EXERCISES

13. Let /be a C function defined in a domain Z> in R2.

(a) Show that S: {z =/(x, y)} is a surface patch with coordinate x, y.

(b) Compute the first fundamental form and the area element for /.

(c) Show that the element area is given by sec y dx dy, where y is

the angle between the normal to 2 and the z axis.

14. Find the tangent plane, first fundamental form and area element for

these surfaces :

(a) The paraboloid x = y2 + z2-

(b) The cone zz = x2 + y2.

(c) The hyperboloid z = x2 y2

(d) : x(, v) = {u + v2, v + u2, uv)

15. Find the length of the intersection of these surfaces:

(a) x2 + y2 + z2 = 1

*x2 + 2y2 + 2z2 = 1

(b) z2=2x2+>-2

z = x2 + 2^2

16. Find the angle between the parametric curves at a general point for

the surface given in Exercise 14(d).

17. Find the area cut off the tip of the paraboloid x2 =y2 + z2 by the

plane x + z = 1 .

18. Find the area of these surfaces:

(a) The cone z2 = x2 + y2 0<z<a.

(b) S: x = (, cos , v) 0<v<tt, tt<u<tt

(c) The part of the hyperboloid z = x2 y2 inside the unit ball.

(d) The ellipsoid x2 + y2 + 4z2 = 4.
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PROBLEMS

13. Recall that a differential form M du + N dv determines a family of

curves : those curves along which M du+ N dv = 0. If ds2 = E du2

+ IF du dv + G dv2 is the first fundamental form of a surface patch show

that the family ofcurves orthogonal to the family defined byM du + N dv = 0

is determined by

{EN
-

FM) du + {FN -

GM) dv=0

14. Let p0 be a point on the surface S. Show that we can find a surface

patch near p0 so that the parametric curves are orthogonal. {Hint: Let

u, v be coordinates near p0 and explicitly find the family of curves u = u{t, c),
v = v{t, c) orthogonal to the curves dv = 0 such that (0, c) = 0, v{0, c) = v0.

Show that v, c are orthogonal coordinates.)

15. Let y be a curve on the surface S. Find orthogonal coordinates

u, v at a point p0 on y so that (i) y is the curve v = 0, (ii) u is arc length

along y.

16. Show that a cube is not a surface along its edges.

17. Is ds a differential 1-form?

18. Find the differential equations for the geodesies on the torus (Figure

8.12):

x = (1 cos ()sin 8

y
= (1 cos <^)cos 0

z = sin </>

19. Find those planes which intersect the ellipse x2 + a2y2 + b2z2 = 1 in a

geodesic.

20. Let {(, v) 6 R2 : u > 0, v > 0} parametrize a surface with first funda

mental form ds2 = v2 du2 + u2 dv2 Find the equation of the family of

Figure 8.12
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curves orthogonal to the curves uv = constant, and express the fundamental
form in terms of these new coordinates.

21. Find the geodesies on the surface with first fundamental form

ds2 = du2 +/() dv2

22. Show that the curves v = constant on a surface with first fundamental
form Edu2 + G dv2 are geodesies if and only if 8E/8v = 0.

23. Let be a surface path with two different coordinates:

S : x = x{u, v) (, v)e D

2 : x = x{r , s) {r, s)eA

Show that

Sx Sx

8u 8v
dudv =

J*

\8x 8x

8r 8s

{Hint: Define u = u{s, t),v= v{s, t) by this property : x = x{r, s) if and only
if x = x{u, v) with u = u{r, s), v = v{r, s). Show that

3x 8x t8x 8x\ 8{u, v)\

8r 8s \8u 8vJ 8{r, s) J

The following problems use the normal to a surface : this is a unit vector

N orthogonal to the tangent plane.

24. Let y be a curve on the surface 2. Let N represent the normal to

2, and T the tangent to y. The unit surface normal to y is the vector

Ny = N x T.

(a) Show that y is a geodesic on Z if and only if <NV , dT/ds} = 0.

(b) In general, the inner produce Kg
= <NV , dT/ds) is called the

geodesic curvature of y on S. Suppose (, v) are orthogonal coordinates

on S and Kg1, k92 are the geodesic curvatures of the lines v = constant,

= constant, respectively. Verify Liouville's formula : the geodesic

curvature of the curve y is given by

jo

Kg
= + Kg1 COS 6 + Kg2 SU1 9
ds

where 0 is the angle between the tangent to y and the direction x.

{Hint: Write

T = Ti cos 0 + T2 sin 0

where Ti, T2 are the tangents to the curves v = constant, u = constant.
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Then

dl dTi
n dT2 dd

= cos 0 + -7- sin 0 + (-Ti sin 0 + T2 cos 0)
ds ds ds ds

Substitute these expressions into

*9=(g,NxT)
and evaluate at 0 = 0, 0 = n/2.)

25. If y is a curve on the surface 2 we can decompose dl/ds into its

components tangent to and orthogonal to the surface:

dT
= K9Ny + /cN

as

where kn is called the normal curvature to T.

(a) Show that the curvature of y is {k,2 + kn2)U2.

(b) Show that the normal curvature of a curve y depends only on the

tangent to y and is the same as the curvature of the curve of intersection

of 2 with the plane through T and N.

(c) Show that the curvature of the curve y is given by kn{T) sec 0,
where 6 is the angle between dT/ds and N.

26. Using Liouville's formula find the geodesic curvature of a general

curve on the surface obtained by revolving the curve z = exp( x2) around

the z axis.

27. Let 2 be a surface such that at every point every curve on 2 has

zero normal curvature. Show that 2 is a piece of a plane.

28. Let p be a point on a surface 2 and let q, r be two nearby points. It

is possible to select q, r tending to zero so that the plane determined by

p, q, r does not converge to the tangent plane (unless 2 is itself a plane).

For example, if y is the curve intersection of some plane II with 2 and if r

follows q along y then the plane determined by p, q, r is always n, which

need not be the tangent plane to 2. Furthermore, if we move q slightly

off y we can be sure of the same behavior with the requirement that the angle

between q and r (in some parametrization) is not zero (however, it must tend

to zero). Here is an explicit example. 2 is the surface z = x2 para

metrized by x(k, v) = (, v, u2). The tangent plane at p, the origin, is the xy

plane. However, if

q
= (2/,0,4f2), r = (M2,/2)

then the plane determined by p, q, r tends (as / -* 0) to the plane orthogonal
to (0, 1, 1).
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8.4 Surface Integrals and Stokes' Theorem

Suppose that / is a continuous function defined in a domain D in R3,
and Z is a surface in D. We can verify by an argument identical to that in

Proposition 6 that the following definition makes sense independently of the
coordinate choices involved.

Definition 9. Partition Z into subsets Z1; . . .

, Z of surface patches on Z.

Define the integral of/ over Z to be

\fdS= j fHdudv

where H du dv is the surface area element in the patch containing Z; .

Examples

25. I=\xx2y2z dS, where Z is the hemisphere Z: {(x, y, z):
x + y2 + z2 = 1, z > 0}. Using the same parametrization as in

Example 23, we have

n/2

cos5 m cos2 v sin2 v sin u du dv

nil
j*'*.

1 r" rn/2 n
= - sin2 2v dv cos5 u sin u du =
4 J-* J0 2424

26. / = fj.(x + y2) dS, where Z is the piece of the paraboloid given
in Example 24.

r2" r1 n

I = 2 [r2 cos u + r3 sin2 m] dr du =
-

*n *n 2

Normal and Orientation

Let Z be a surface in /?3. The tangent plane to Z at a point x0 is a two-

dimensional plane, thus its orthogonal complement is a line, called the

normal line to Z at x0 . The normal vector N is a choice of unit vector lying
on this line which varies continuously with the point. Such a choice is

always possible locally, but is not always possible over the whole surface.
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moebius band

Figure 8.13

Consider the surface depicted in Figure 8.13 (called the Moebius band).
This is obtained from a rectangle (Figure 8.14) by gluing together the

vertical sides so that vertices with corresponding labels abut. There is no

way to continuously select a normal vector to this surface which does not

point in the opposite direction when traced around the circle in Figure 8.13.

Notice that the same kind of phenomenon is put in evidence by Figure 8.14:

a right-handed basis gets transformed into a left-handed basis when we cross

the vertical line. We express this by saying that the Moebius band is not

orientable.

Thus in two dimensions we find a problem which does not exist in one

dimension. We ran into the same problem in the discussion of integration
under a change of variable in the plane, and we successfully sidestepped it

then. But we cannot avoid it now. We shall refer to an orientation on a

surface Z in R3 as a choice of a sense of positive rotation in the tangent

plane at every point. This choice is assumed to vary continuously: that is,

if vl5 v2 are nowhere collinear continuous vector fields defined on the surface

and the rotation vt -> v2 is positive at x0 it must be so in a neighborhood of

x0 . A choice of orientation is equivalent to a choice of normal vector.

For, if a normal N is chosen we defined positive rotation in the tangent plane
as follows: Vj-+v2 is positive if Vj-^v^N is a right-handed system.

Conversely, if an orientation is chosen we can define N =

Vj x v2 ,
where

v1( v2 are unit vectors and the rotation vx - v2 is positive. If Z is oriented

and (, v) are coordinates on a patch in Z, we shall say that {u, v) is a positively



8.4 Surface Integrals and Stokes' Theorem 659

oriented coordinate system if the rotation x - x is positive. Here is a fact

relating positively oriented coordinate systems which completes the dis
cussion.

Proposition 7. If {u, v) and (', v') are two positively oriented coordinate

systems defined on the oriented surface Z, then

d{u, v)

d{u', v')

Examples

>0

27. If/ is a C1 function defined on a domain D in the xy plane,
then the graph

T{f):z=f{x,y)

is a surface patch. We consider it oriented so that the rotation from

x*
= (1, 0, df/dx) to xy

= (0, 1, df/dy) is positive. Then the normal

vector N always points upward out of the surface {N3 > 0) :

-h(ir+f)TH-g'
28. More generally, we can always orient a surface patch Z: x =

x(m, v), {u, v) e D by transferring the orientation from the u, v plane.
That is, we take x -> x as the positive sense of orientation. Then

the normal to Z is

N= ||x x xjr1(x x x)

Figure 8.14
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Just as, in the case of curves, we introduced the
"

vector length element"

dx = Tds along the curve, we introduce the vector area element dS = Nds on

a surface. Notice that, in terms of coordinates

dS = ||x x xj du dv = xudu x x dv

(i.e., it is the vector product of the length elements along the parametric

curves). In this way we can integrate vector fields along oriented surfaces :

Definition 10. If Z is an oriented surface and v is a vector field defined

around Z, define the flux of v across Z by

J<v, dS} = J<v, N>dS

The significance of the word flux will become apparent in the next section.

Example

29. Compute the flux of v(x, y, z) = {xy, yz, zx) across the graph of

/(x, y) = x2 + 2/ x2 + y2 < 1

We take x, y as coordinates on Z. Then

dx dx\
f<v,N>rfS=f (y x )dxdy
h Jx2+y2S1\ dx dy/

f lX}
det 1

= f [x3 + 2y2x - 2x2y - 4x2y2 - 8y3] dx dy
'x2+y2sl

xy v(x2 + 2 v2) (x2 + 2y2)x\
0 2x J dx dy

1 4y /

t-y*

An A

= 4 f \rs cos2 6 sin2 9 dr d9 = \
Jn Jn 6'O -"O

Suppose that v is the velocity field of a flow and C is a closed path (oriented
closed curve). In Section 8.2 we defined the circulation around a circle; we

could use the same definition to define the circulation around C:

circ (C) = f <v, T> ds (8.46)
Jr
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(s = arc length along C, and T is the tangent vector to C). In Section 8.2

we used this idea to define curl v, the "infinitesimal circulation" about a

point; now we ask if we can recapture the total circulation from the in

finitesimal. A clue is obtained by recognizing the integrand of (8.46) as the

differential form associated to v. If v = {v1, v2, v3), then, on the curve

<v, T> ds = Zi/ dx1 = <v, dx}. What we are then asking for is the analog
for surfaces of Green's theorem. Since the curl plays the same role in three

variables that dco plays in two, it is no accident that such a theorem exists.

Stokes' Theorem

Suppose now that Z is an oriented surface lying in the domain of the

vector field v, and D is a subset of Z bounded by a curve T. For the purposes

of integration we must choose an orientation of T. It will be the natural one

corresponding to the given orientation of Z : T winds counterclockwise around

D. To be more precise, we shall define the positively directed tangent. Let

peT and consider a small path y, with tangent vector t at p which crosses T

and is directed so that it enters D. Then the tangent vector we wish to choose

is that one T such that the rotation T - t is positive (see Figure 8.15). This

corresponds to the counterclockwise sense of rotation about the normal to

the tangent plane. When the boundary of D is so oriented it is a path, de

noted dD. Now the theorem we have in mind (Stokes' theorem) asserts

that the circulation around dD is given by

f <curl v, N> dS

Figure 8.15
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In order to derive this theorem from Green's theorem we must ensure that the

conditions of Green's theorem will be met. Hence the following notion

of a regular domain.

Definition 11. Let Z be a surface in R3. A subset D of Z will be called a

regular domain if it can be partitioned into finitely many subsets of surface

patches which correspond to regular domains in the plane in the particular
coordinate representation.

Theorem 8.3. Let v be a vector field defined in a domain U in R3, and

suppose Z is an oriented surface lying in U with normal N in U. Let D be a

regular domain in Z whose boundary dD is a curve. Then

f <v, T> ds = f <curl v, N> dS (8.47)
J6D JD

Proof. Since D is regular, there are coordinate patches Si, . . .

, 2 and a partition

D Di v u D of D such that D, <= 2, and Dt corresponds to a regular

domain in the 2, coordinates. Now let Bi,...,Bm be balls in R3 such that

Dcftu-'uB, and each Bj lies completely inside one of the coordinate patches

2, . Let pi, . . .
, p be a partition of unity subordinate to this cover. Then, since

2Pj
= 1 on D,

f <v, T> ds = 2 f iPj v, T> ds = 2 f <PjV, T> ds

JSD J JdD '! JHDi>

since each part of 8Dt which is not on 8D appears as part of 8Dj for some/ = i and

with the opposite orientation.

f <curl v, N> dS = 2 f <curl(/>,v), N)dS
= 2 f <curl(pJv), N> dS

J j) J J j) i,j JDt

Thus, we only need to show that the right-hand sides are equal termwise: we may

assume that we are in a coordinate patch.

This is now our situation. Let S be a surface patch coordinatized by

x = {x\u, v), x2{u, v), x3{u, v)), (, v)eN<= R2

and suppose A is a regular domain in TV and D is the subdomain of S corresponding

to A: D = {x(, v), {u, v) e N}. Let v = {vl, v2, v3) be a vector field defined on S.

Then we must verify

f <v, T> ds = f <curl v, N> dS
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This is just the computation that <curl v, N> dS = {dwv) du dv under the change of

variables. First, we study the left integral :

f f f 8x' 8x'
<v, T> ds = Zv' dx' =\ Hv'du + Zv<

Jsd Jtr> Jfli ou 8v

By Green's theorem this is

r h [du V ~8v) ~Sv\

dv

8x'

~8u
dudv

Now

8

~8~u

8

~8v

8v

8u

I 8xl\ _ 8vJ 8xJ 8x' 82x
I v' I = 2 ; 1" v'

\ 8v ] j 8xJ 8u 8v 8u 8

I
.

8x'\ dv' dx' dx'
t

d2xl

V' ~dv) =y8xJ~8v~8u+V ~8v~8i

The integrand in (8.48) is thus

8v' I8x] 8xl 8xJ 8x'\

} JxJ \8u ~8v
~

~8v du)
/0y' 8v]\/8xJ8x> 8x> 8x>\

=

i< j \8~x~1
~

~dxl) \8u ~8v~~8v ~8u]

dv

Hence, after Green's theorem the left integral becomes

<curl v, xu x x> du dv

But the right integral is

f <curl v, N> ||x x x|| dudv = J <curl v, x x x> du

since x x x
= ||x x x || N. The proof is concluded.

Examples

30. Calculate f <v, dx), where Z is the surface

Z:z = x2 0<x<l 0<y<l

(8.48)
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and v(x, y, z) = -{y, z, x). We make the computations:

curlv= -(1,1,1)

xx
= (l,0,2x)

x,
= (0,1,0)

dS = {xx x x,,) dx dy
= {-2x, 0, 1) dx dy

f <v, dx} + f <curl v, dS> = f f (2x + 1) dx dy = 0

Jgz 's 0 Jo

31. Let Z be the surface patch

x = x(m, v) = (m cos v, u sin v, u cos 6v) 0 < u < 1 0 < u < 2n

Let N = {N1, N2, N3) be the normal to Z. Then

f {N1 + JV2 + TV3) dS = f <curl v, dS}

where v = (y, z, x). Thus, the sought-for integral can be computed

as f <v, dx}, where y is the curve m = 1 :

y : x = x(u) = (cos v, sin u, cos 6v)

<v, dx> = (-sin2 v + cos v cos 6t> 6 cos t> sin 6v) dv = -n

Jy -"o

EXERCISES

19. Calculate \zfdS, where
(a) /(x,y,z)=x2 + 2y S:z2=x2+y2 0<z<l

(b) /(x, y, z) = xy + yz + zx S:z = x2 + y2 O^z^l

(c) /(x, y, z) =xyz S : x(, ) = ( cos m, w sin u, i> sin )

0<,u<,2n 0^w^2t7

20. Calculate J <v, c/S>, where

(a) v(x, y, z) = (xy, yz, zx) S:z = e*' O^x^l

O^y^l

(b) v(x,y,z)=(l,-y,x) S:x2+y2 + z2 = l

(c) v(x,y,z) = (l,0,y) S:z = x2-y2 x2+y2<:l
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21 . Suppose v is a vector field defined in a neighborhood of the domain D.
Show that

f <curl v, dS} = 0
J 3D

22. (a) Suppose that D is a regular domain on a surface S. Verify that
for any vector a,

- f (axx,rfx> = [ <a, dS>
J Jqd Jd

(b) Just as we integrated vector functions on the interval, we can

integrate vector functions on lines and surfaces (and in space). Show

that, for a regular domain D these vectors are the same :

Jd j Jd

= - \ xx dx

{Hint: This follows from part (a).)

23. Show that if u, v are C1 functions on the regular domain D that

f (uVv, dx> = f <V x Vy, dS>
Jsd Jd

PROBLEMS

29. If en is a closed form defined in a neighborhood of the unit sphere in

R3, show that there is a function /such that w=dfon the sphere.

30. Consider the torus T:

x = x(, 0=2 cos u + cos v

x = x{u, v) = (2 + cos Ocos k, (2 + cos Osin u, sin v)

(a) Show that the differentials du, dv are well-defined differential

forms on T.

(b) If co is a closed form defined on T, show that the integrals

Jr Jy

are constant as T ranges over all circles v = constant, and y ranges over

all circles u = constant.

(c) If to is a closed form there are constants ci, c2 and a differentiable

function /such that

co = ci du + c2 dv + df
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{Hint: Take Ci = JY col2n, c2 = Jy co/2n, where the integrals are taken as

defined in part (b).)
31. State and prove a fact like that in Problem 30(c) when Tis replaced

by a cylinder.

32. Verify this restatement of Stokes' theorem: Let v = (F, G, H) be a

vector field defined in a domain U in R3 and suppose that 2 is an oriented

surface lying in U with normal N = (cos a, cos /3, cos y). If D is a regular

domain in 2, then

f Fdx+Gdy + Hdz
J 3D

r \(8H 8G\ 18F 8H\ n (8G 8F\
=

m^y--fejC0Sa+\fe-i7JC0^+lix-^jC0Sy
dS

33. Let D be a regular domain on the oriented surface 2. Show that if

v is a vector field defined on 2

f <v, Ny> dS = \ <curl(v x N), N> rf5
'SD JD

where Nv is the unit surface normal to 8D (see Problem 24).

8.5 The Divergence Theorem

Let v be a vector field defined in a domain U c: R3, and x = (b(x0 , /) the

associated steady flow. Let D be a domain whose closure is contained in [/

such that dD is sufficiently differentiable surface. Notice that dD is orien-

table, since we can choose as normal vector the unit vector N which is

exterior to the domain D. We shall assume throughout this section that

this is the chosen normal. For a small interval of time A/, let us attempt to

calculate the amount of fluid that passes through dD. For x0 6 D, the

particle at the point <b(x0 ,

- /) at time 0 for 0 < t < At passes through x0 ,

since <b(x0 ,
-/ + /) = <b(x0 , 0) = x0 . Thus, the volume of the fluid passing

through dD at time At is the volume of the domain

DAt = {x: x = <b(x0, -/):0< / < At, x0 e dD}

We shall approximate this volume by linearizing locally. That is, we cover

dD by small neighborhoods Ut ,
and replace Ut n dD by the piece Tt of the

tangent plane to dD with the same area at some point in Ut . We assume
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also that <b is a pure translation through Tl . Then the volume which passes

through Tt is a parallelepiped of volume

^(xj.-AO-^x^O.N)^

where x; is some point in Ut n dD, and AAt is the area of Tt . Let us point
out that this is a signed volume ; the sign being positive if the flow is into D

(since N is the exterior normal, and if <b(x; ,

- At) is on the same side of dD

as N, <<b(Xj ,

- At) <b(Xi , 0), N> is positive). This is in fact what we want,

for we want to discover the flow into D rather that the flow through dD.

It follows that an approximation to the volume of >A( is

E<<p(x-A/)-<p(x0),N>A^
i

and by letting the covering get arbitrarily fine, we may replace this by an

integral:

Jefl<<Kx ,

- A/) - <b(x , 0) , N> ds (8.49)

The limit of 1/A/ times (8.49) as A/-0 through positive values is the in

stantaneous flow into D, or the flux into D at time / = 0.

Proposition 8. The flux out of D at time t = 0 is

JJ><v,rfS>

Proof. The flux out of D is

- lim f <<J>(x, -At)
- 4>(x, 0), N> dS

4r->0 A? JSD

= lim - f <<J>(x, -AO-4>(x,0),rfS>
At-*o &t JeD

= f < lim [<b(x, At)
- 4>(x, 0)], dS> = f <v, dS>

J3D 41-0 A? Jsd

Now the flux out of D is the instantaneous rate of flow of fluid out of D.

On physical grounds this should be identical to the instantaneous rate of

expansion of the fluid in D, which is (as in Section 8.1) Jfl div v dV. Thus,

we should expect

jUv,dS> = jjjclWvdV (8.50)
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and in fact this is the case. Equation (8.50) is known as the divergence
theorem. For suitable domains it is an easy consequence of the funda

mental theorem of calculus. As in the case of Green's theorem, we shall

call such domains, or finite unions of such domains, regular domains. Many
domains in R3 are regular, but by no means are all regular. The general

theorem, for an arbitrary domain, is not easy to prove and we shall here

avoid the issue.

Definition 12. A domain D in R3 is regular if it can be expressed in each

of these ways :

D = {{x, y, z) : (x, y) e Dt f{x, y) < z < g{x, y)}

= {(x, y, z) : (x, z) e D2 r{x, z)<y< s{x, z)}

= {(x, y, z) : {y, z) e D3 u{y, z) < x < v{y, z)}

where all functions are continuously differentiable.

Lemma. If v is a differentiable vector field defined in a neighborhood of

the regular domain D, then

f <v, dS} = f div v dV
Jan J n

Proof. Let v = y'E, + v2E2 + v3E3 .

Sv1 8v2 8v3

Sx1 8x2 8x3

We shall show that for each i,

JC
8v'

<v'EdS> = dV

eo Jd dx'

Then the lemma will follow by summing over i. To prove the ith case, we use the

appropriate representation of the domain. Since all cases are then the same, we

shall only verify one case, say the third.

Now, using the expression

D = {(x, y, z) : (x, y) e Di , /(x, y) < z ^ g{x, y)}
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the boundary of D consists of the part 20 lying over 8D1 and the two surfaces

2i:z=/(x,y) (x,y)eDi

22:z = 7(x,y) {x,y)eDi

Since E3 is tangent to the surface lying over 8Dt at every point, the left-hand

integral over 20 vanishes.

Now 2i has the parametrization

x = (x,y,/(x,y)) (x,y)eZ>,

Since the domain lies above this surface, the exterior normal points downward, so
is determined by xx x x, (see Figure 8.16). Now

x = (l,0,/,) x,
= (0,l,/,)

so we have dS = {f , fx ,

-

1) dx dy. Then

f <d3E3 , dS} =
- f v3{x, y, f{x, y)) dx dy

J*i JDl

Figure 8.16
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A similar computation produces

f <v3E3 , dS> = f v3{x, y, g{x, y)) dx dy
JZ2 JDi

Now, we compute JD {8v3/dz) dV by Fubini's theorem.

r 8v3 f f c"-'1"'' dv3

TTdV=\ {x,y,z)dz dxdy
Jd oz JDl \_J f(x,y) oz

= [v3{x, y, g{x, y)
- v3{x, y, /( x, y)] dx dy

by the fundamental theorem of calculus. But this is, according to our previous

calculations the same as fD <u3E3 , dSy. Thus the lemma is verified.

Theorem 8.4. (Divergence Theorem) Let v be a continuously differentiable

vector field defined in a domain D in R3. Suppose D can be covered by

finitely many balls Bu ..., Bn such that each D n Bf is a regular domain.

Then

f <v, dS} = f div v dV

Proof Let pu . . .
, p be a partition of unity subordinate to Bi, . . .

, B . Then

f <v, ds> = 2 f <pi v, ds>
= 2 f <p v, dsy

f divvrfK=2 f div(p,v)rfK= 2 f div(p,v)rfF
^D i 'd i ^DnBt

for the customary reasons: Sp, = 1 and p, =0 outside 5(. By the lemma, the

right-hand sides are the same termwise, so the left-hand sides are the same. We

shall henceforth describe domains of the type referred to in Theorem 8.4 as regular.

Examples

32. First of all, the result of Exercise 22 follows easily from the

divergence theorem, since div curl v = 0. For then

JdD <curl v, dS} = Jj, div curl v dV = 0
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33. Let

D = {x2 +y2 + z2 < l},/(x,y, z) = x2 + y2 + z2

Then

f <V/,rfS> = f divVfdV = 6 f dV = Sn
JdD Jd Jd

34. Let D be the domain {1 > z > x2 + y2}, and let v(x, y, z)
{xy, yz, x). Then div v = y + z and

f div v dV = f f (y + z) dx dy] dz
JD J0 LJxi+yiz

= n \ z2 dz = -

Jo 3

f <v, dS} = f <v, dS} - f <v, dS>
JaD -"zsl ^Z=X2+J,2

= f xdxdy-\ <(xy, y(x2 + y2), x),

( 2x, 2y, 1)> dx dy

= 2f {y2x2 + y*)dxdy = l
Jx2 + y2<.l i

The Heat Equation

In Chapter 6 in our discussion of the heat equation we postponed its

derivation in dimensions greater than one. We had to await the divergence

theorem; with that we can carry through our argument just as in the one-

dimensional case. Thus, we suppose a homogeneous metallic object Uin

R3 has at time / a temperature distribution u{x, t). According to the laws of

thermodynamics, the vector field q associated to the flow of heat energy is

proportional to the gradient of the temperature, but for sign:

q + c Vw = 0 (8.51)

Another basic principle is this: The increase in temperature of a unit mass is

proportional to the increase in heat energy. More specifically, the change
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in energy in any given domain D in a time interval / is given by

kp f Am dV
JD

where Am(x, At) is the change in temperature at x over the period At, p is the

density, and k is the proportionality constant (the specific heat). Thus, the

rate of increase of heat energy in D is

Now, we can compute (using the law of conservation of energy) the rate of

increase of energy in D; it is the flux into D across the boundary. Thus we

obtain this basic equation for every domain D:

- f <q, dsy = kP\d-dv
JdD jd ot

By the divergence theorem and (8.51) we have

f div Vu dV = f -^ dV
Jd c Jodt

for every domain D. Thus the two functions must be the same, and we

obtain the heat equation:

divV = (^\c J dt

As we saw in Chapter 6, the steady state (or equilibrium) temperature

distribution solves Laplace's equation:

div Vm = 0

d2u d2u d2u

dx2 dy1 dz2

EXERCISES

24. If S is an oriented surface with normal N and /is a C1 function

defined near S, we denote <V/, N> by S//SN. Show that

L^dS=i*fdv
for any regular domain D.
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25. If v is a vector field such that div v = 1, then for any regular domain D

vol(fi) = f <v, dsy
J6D

In particular, we may make any one of these choices for v:

(x, 0, 0) (0, y, 0) (0, 0, z)

Find the volume of these domains, using the divergence theorem.
(a) The cap z > ax1 + by2 0 < z ^ 3.

(b) The cone z2 ^ ax2 + by2 0<z^l.

(c) The tetrahedron bounded by the planes z = 0 x + y + z = l

x=2y,y = 0.

26. Verify this formula for any regular domain:

4 f \\x\\dV= \ ||x||<x,rfS>
JD JSD

27. Here is another way of expressing the divergence theorem, which is

free of vector notation. Express N in terms of its direction cosines :

N = (cos a, cos /J, cos y)

Then for any three functions F, G, H,

(* t* / Pi T7 P/~* Pk Tf\

{Fcosa. + GcosP +Hcosy)dS=\ ( + + ) dV
JdD Jd \8x dy dz J

28. Compute

(a) Ji <(x2, y2, z2), dsy where S is the (oriented) surface of the cube

with side edge 2, and center at the origin.

(b) J (x cos a y cos y8 z cos y)dS over the sphere 5: x2 + y2
+ (z l)2 = 1, where (cos a, cos /?, cos y) is the normal.

PROBLEMS

34. Let 2 be a surface which intersects each ray from the origin in at most

one point. The set of rays which intersect S will pierce the unit sphere in

a set S. The area of S is the solid angle subtended by S. Show that the

solid angle is given by

f <x,dsy
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35. Vector-valued functions can easily be integrated over any domain,
coordinate by coordinate. Verify these formulas for a regular domain D:

\ v x dS = I curl v dV
JdD ^d

f fdS=\ VfdV
JdD JD

I. NrfS=0

36. Let v be a divergence-free vector field defined in a domain U. Show

that if y is a closed curve defined in U, then for any regular domain Dona

surface S such that 8D = y, the integral

<v, dsy
Jd

always has the same value.

37. Show that the function /is harmonic in the domain D if and only if,

for every ball B <= D,

<V/rfS>=0
Jqb

38. Suppose there is given a flow in R3 with these properties:

(a) The flow has constant velocity outside of some large bounded set.

(b) The flow on the {z = 0} plane remains along that plane (no fluid

passes from the upper half space to the lower half space ),Show that

f divv</K = 0
Jh

where H is the half space {z > 0}.

8.6 Dirichlet's Principle

Let D be a domain in R3, and suppose v is the velocity field of a flow through

D which is steady (time independent). The total kinetic energy of the flow

is given by the integral

2-1'p||v||2 dV (8-52)



8.6 Dirichlet's Principle 675

where p is the density of the fluid (we shall here take p to be constant). An

important physical problem is this: find the flow which minimizes the energy
(8.52) subject to certain conditions being fixed on dD. For example, we may
assume that the normal component of the flow <v, N> through the boundary
is fixed. Or we may assume that the flow is conservative, that is, v has a

potential function, and the values of the potential are fixed on the boundary.
These problems are analogous to Neumann's and Dirichlet's problems
respectively (see Chapter 6). Dirichlet's principle is that the flow which

minimizes the energy is the gradient of a harmonic function (solution of

Laplace's equation). In this section we shall derive Dirichlet's principle and
indicate how the techniques involved can be used to discover the solution

to the problems. In order to do this, let us make these problems precise.
Let D be a domain in R3, and/a function defined on D.

I. (Dirichlet's Problem) Among all C2 functions u defined on D which

have the boundary values/, find the one which minimizes the integral

\d \m\\2 dV (8.53)

II. (Neumann's Problem) Among all C2 functions u defined on D such

that <Vm, N> =/on dD, find the one which minimizes the integral (8.53).

In order to study these problems we need (i) to relate boundary data to the

integral (8.53), (ii) to discover an interpretation of (8.53) which will suggest a

technique for minimizing that integral. The first need is filled by the di

vergence theorem, which will take the form of Green's identities (given below).
The interpretation requested in (ii) is that of Euclidean vector spaces and the

technique will be orthogonal projection. Let us describe this idea more

fully.
Let C2{D) represent the collection of functions which are twice con

tinuously differentiable on D. We can make this vector space into a Eucli

dean vector space by defining on it the inner product

<m, v) = f <Vm, Vi>> dV (8.54)
JD

Then (8.53) is the square of the length of Vw in terms of this inner product.

We shall denote (8.53) by E2(u}. Our problem is to minimize this length

among all functions with the given boundary value/. Let Mf be the space of

functions in C2{D) with boundary value /. Then Mf is a translate of the

spaceM0 : ifu is a function with boundary value/, thenMf
= {u + g : g e M0}.

Now it is a simple principle of Euclidean vector spaces that the vector in Mf
which is closest to 0 is orthogonal to Mf, hence also orthogonal to M0.
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The solution to our problem will then be that function in Mf n M0l.
Finally, we can identify M0L as the space of harmonic functions.

There is one fault with our reasoning. The "simple principle" above is

one about finite-dimensional Euclidean vector spaces (recall Chapter 1),
and it is not necessarily true in the infinite-dimensional case (of which ours

is a prime example). The problem is that there need not be any point in

Mf n M0L; and our argument will be complete once this problem of existence

is resolved. The mid- 19th century mathematicians such as Dirichlet and

Riemann were little troubled by such problems; it was during the late 19th

century that mathematicians began to think of existence questions as crucial

(with good reason). And it was not until the last decade of that century that

the existence problem was effectively solved. (The reader is referred to the

history by Kellogg (pp. 277-286) for a fuller account.)
The link between the geometry described above and the subject of harmonic

functions comes out of certain computations involving the divergence theorem

(Green's identities). These will now be exposed. We shall adopt one more

notational convention before proceeding (already foreseen in the problems):
if m is defined on the oriented surface Z, then <Vm, N> is the directional

derivative of u in the direction normal to Z. We shall denote it by du/dN.

Theorem 8.5. (Green's Identities) Letfi g be two C2 functions defined on a

regular domain D. Then

\ f% dS = f U*g + <v'> v^>j dv <8-55)
JdD ON Jd

Proof.

f fj%dS=\ </%, N> dS = \ dbf{fVg) dV
Jeo oN JSD JD

But, as is easily computed (see Exercise 10):

div(/V#) =/div Vg + <V/, V<?>

so Theorem 8.5 is proven.

Corollary 1.

(i) Ifg is harmonic, \dDf{dg/dN) dS = E </, g}.

(ii) Iffe M0 and g is harmonic, E </, g) = 0.
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(iii) Iff and g are harmonic,

f f%dS=\ g%dS (8.56)
Jsd dN jSd dN

v '

(iv) Iff is orthogonal to every function in M0 , f is harmonic.

Proof.

(i) If g is harmonic, then Ag = 0, so by (8.55) we have

f f%rdS=\ <yfVgydV= Eif,gy (8.57)
J
3D 8N JD

(ii) Now, iffe M0 , /has boundary values 0, so the integral on the left of (8.57)

also vanishes, and thus E(f gy = 0.

(iii) If g is harmonic, we have (8.57). If /is also harmonic we may interchange

the roles of /and g in (8.57) obtaining

L^ds=E<9'f>
Thus (8.56) results since E(g,fy =E(f gy.

(iv) If ge M0, then by (8.55) (interchanging/and g), we have

f gtifdV+E<f,gy=0
Jd

Now if/ is orthogonal to M0 ,
then J gAfdV = 0 for every g with boundary value

zero. This implies that A/=0 everywhere. For suppose A/(p) >0 for some p

in D. Let B be a ball in D centered at p in which A/> 0, and let p be a C2 function

such that p(p) = 1 and p
= 0 off B. Then p e M0 ,

so

\ pAfdV= \ PAfdV=0
Jd 'b

Since pA/> 0 in B, it must be zero. Thus A/(p) = p(p)A/(p) = 0, a contradiction.

Corollary 2. The orthogonal complement of M0 in C2{D) with the inner

product E </, gy is the space H of harmonic functions.

Theorem 8.6. (Dirichlet's Principle) Let D be a regular domain in R3 and

supposef is a continuous function on dD. Let Mf be the class offunctions
in

C2{D) with boundary value f.



678 8 Potential Theory in Three Dimensions

(i) If there is a harmonic function in Mf, it minimizes the energy integral.

(ii) If there is a function in C2{D) which minimizes the energy integral, it

must be harmonic.

Proof. These facts follow from the same reasoning as in Euclidean geometry.

(i) Let u eMf be such thatA = 0. If g is another function inMt ,g u=0on

dD, so g u e M0 .

E2<gy = E2<g- + >= E2<g
-

u> + 2E<g-,> + 2<>

= 2<<7-> + 2<>

since uM0. Thus, 2<#> >2<> for every geMf.

(ii) If e C2(Z>) minimizes the energy integral in Mt ,
it must be orthogonal to

M0. Forif^eM0, then ugaxe both inMf, and thus E2(u + gy >,2<>. But

2<" 0> = 2<"> 2<, gy + 2<<?>

so 0 > 2<k, gy + E2igy for all # 6 M0 . Consider for / e R the function

<t,{t)=2E<u,tgy + E2<\tgy

Since 0(0 < 0 for all / (positive or negative), and <(0) = 0, we must have <^'(0) = 0.

But <^'(0) = 2E(u, gy. Thus u_L M0 , so, by Corollary 1, u is harmonic.

In order to solve Dirichlet's problem by his principle it remains to show that

there exists a function in C2{D) which minimizes the energy integral. The

technique for carrying this through was finally accomplished by Hermann

Weyl (1926) and his methods have had far reaching effect in a wide class of

boundary value problems for partial differential equations.

Harmonic Functions

We can use Green's identities and Dirichlet's principle in order to derive

the basic properties of harmonic functions (analogous to those in two

dimensions given in Chapter 6). Out of this will come a hint for solving the

Dirichlet problem.

Proposition 9. Let f be a C2 function defined on the boundary of a regular
domain D. There is at most one harmonic function with boundary value f.
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Proof. If u, v are both harmonic and have the boundary values/, then u
-

v is at
the same time harmonic and in Mo . Thus< -

v, u
-

y> = 0. But

E(u-v, u-vy= f \\V{u-v\\2dV
Jd

so we must haveV(
-

0 = 0 in D. Thus u -

v is constant. Since u = v on dD, u
is identical to v.

The gravitational field of a particle of unit mass situated at the point p is,
according to Newton, given as

||x-p||2||x-p|| <8-58)

This field is easily seen to be conservative and divergence free, thus it is the

gradient of a harmonic function, called Newton's gravitational potential.

Writing (8.58) out in coordinates, we have

(x1 - p1, x2 - p2, x3 - p3)

[(x1 - p1)2 + (x2 - p2)2 + (x3 - p3)2]3'2

and it is not hard to see that this is the gradient of

Up{x) = \\x - pir1 = [(x1 -p1)2 + (x2 -p2)2 + (x3 -p3)2]-1'2

This particular function stands at the beginning of a sequence of ideas which

lead to a technique due to Green, for solving Dirichlet's problem. These

steps were motivated by an inquiry into the nature of gravitational fields (due
to masses more general than that of a particle), the point being to show that

every harmonic function arises as the potential of a gravitational field.

Green's first result is an easy consequence (reminiscent of the Cauchy integral

formula) of his identities.

Proposition 10. Let Dbea regular domain, and h afunction harmonic on D.

LetpeD. Then

Proof. Once again we first remove a small ball 5(p, 0 centered at p and con

tained in D. Since both h, flp are harmonic in D
- B(p, e), Corollary 1 (iii) applies
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in that domain. Thus,

r T 8UP 8hl

This implies that

c r on. 8h~\ r r en ^1

L[*w
-

n>m\ dS
-

Li* w-uw\ ds ^

Now the second integral can be computed using spherical coordinates centered

at p:

x = p + {r cos 0 cos </>, r sin 0 cos </>, r sin 0)

Then np(x) = r'1. The sphere B(p, e) is given by

x = p + e(cos 0 cos <f>, sin 6 cos <f>, sin 0)

and its exterior normal is the radial vector, so djdN = 8/8r. The element of area on

B{p, e) is dS = e2 cos2 </> dd d<f>. Thus the right-hand side of (8.60) is

Wo [ or \r) r 8r\

t" Cn T h{x) 1 8K\

r
.n/2 .* .a/* gA

= -

h{x)cos2<f>d6d<f>-e \ cos2 </> d8 d</>
J-n '-n/2 J-.J-K/2 or

Since |3A/3r| < ||VA||, the second integrand is bounded as e ->0. Thus the second

term will vanish for ->0. As for the first term x->p as e-*0, so A(x)-*-/z(p).

Thus, letting e -> 0 our integral tends to

r
,*/2

-h(p) \ cos2 </> dd d</> = -47Th(p)
J-n > -n/2

which is what was desired.

Now, if D is the ball of radius R centered at p, then np(x) = ||x p||-1,
so on D, np = R~x and dUJdN = -R~2. Equation (8.59) becomes

*(P) = tAts f hdS + -^-\ |*- dS
4nR2)l{x-U=R 47r^J||x-pli=J?aiV
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Since h is harmonic in D the second integral vanishes (Problem 47) and we

obtain the mean value property for harmonic functions in three variables.

Proposition 11. (Gauss' Theorem) If h is harmonic in a neighborhood of
-B(P, R), then h satisfies the mean value property:

*<*> = TTi f h ds
4nR Jii__m = d4nR

Green's Function

Now, by Corollary l(iii), if A: is any function harmonic on D, then (8.59)
can be modified by k :

-1

Kv) = f47t JdD

h
8(U>

~

k)
- m -k)8JL

dN
l " k)dN

dS (8.61)

Thus, if k is chosen so as to solve Dirichlet's problem with the boundary
value np, the second term will vanish and we obtain an integral formula
for h in terms only of its boundary values. Finally, we could use that

formula to solve Dirichlet's problem with any boundary values. Thus

(8.59) allows us to reduce the general problem to that for a certain family

{np} of specific functions, and for many regular domains that solution is

easily found.

Definition 13. Let D be a domain in R3. If kp solves Dirichlet's problem
with the boundary values np ,

we shall call the function Gp
=

kp Up the

Green's function with singularity at p.

Theorem 8.7. Suppose D is a regular domain such that there is a Green's

function for every point p in D. Then ifh is harmonic on D, h can be found in

terms of its boundary values:

Kp) = r- f h * dS
4nJBD dN

Proof. By (8.61),

but the second integral vanishes since kp U = 0 on dD.
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Example

35. Let us take D to be the upper half space D = {(x, y,z):z> 0}.
Then dD = {{x, y, 0): (x, y)eR2}. Since the domain is infinite we

have to restrict attention to functions for which the integrals make

sense. If Ht is a large hemisphere :

H, = {(x, y, z): x2 + y2 + z2 < /, z > 0}

then (8.61) holds for functions h harmonic on D:

zl[ \h8Up n 8h\
4n Jmo,,)[ dN

"

dN]
zao

+ JLf L^_npSds (8.62)
4nJ (r=0) L dN "dNj

v '

We shall call the function h dissipative if the first integral tends to 0

as /->oo, and the second integral converges. For example, if

||x||2/!(x) and ||x||2V/i(x) are bounded functions on D, h is dissipative

(Problem 48). This is true for np, p not the on xy plane.
Now if h is dissipative we can let / -*oo in (8.62) and obtain

(p) = lf \h8Jh-up8JL]dsyyj

47tJ{z=0}L dN
"

dN]

Nowifp = (x0, yQ,z0),

np(x) = [(x
- x0)2 + {y- yQ)2 + (z - Zo)]"1'2

and its boundary values (z = 0) are the same as those for JTS where

.
= (*o , Jo zo)- Since n9 is harmonic in D and dissipative, there

is a Green's function. Thus, the Green's function for p = (x0 , y0 , z0)
is

gp(x) = iyx)
-

np(x)

l

[(x-x0)2 + (y-y0)2 + (z + z0)2]1/2

1

[(x - x0)2 + (y
- y0)2 + (z

- z0)2]- ^^2T/2
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Now the exterior normal to the plane is the downward vertical, so

d/dN = d/dz. A final computation gives

a*" <fe
v ' " '

[(x
- x0)2 + {y- y0)2 + z2]3'2

Thus, if h is harmonic and dissipative in the upper half space, we have
for any z0 > 0

n{x0 , y0 , z0) = -j -T- j3^
dx dy

2ttJ0 Jo [(x-x0)
2
+ {y-y0)

2
+ z2]

3/2

(8.63)

Finally, we remark that (8.59) can be used to solve Neumann's

problem in the same sense. If there is a harmonic function kp for each

p in D such that

dkp dIlP an
-

=
-

on dD
dN dN

then for any function h harmonic on D we have

dh

h^=LL^-k^dNds4V
" "

dN

Thus h is determined by its normal derivative on the boundary.

PROBLEMS

39. Prove Corollary 2 of Theorem 8.5.

Green's Function for a Ball

40. Using a little bit of plane geometry it is possible to discover the

Green's function for the unit ball. If P is a point inside the ball, let Q be

the point inverse to P in the sphere

P



684 8 Potential Theory in Three Dimensions

Now let X be a point on the sphere. Verify that the triangles (see Figure
8.17) OPX and OXQ are similar (since the angles POX and QOX are the

same and

IQOI
1

~iPO|
or

QO

ox

=

ox

PO

Conclude that

QX OQ

PX OX

41. From the above problem we deduce that

n*(x) = 7^n*(x)

where q is the point inverse to p in the unit sphere. Since IT,(x) is harmonic

in the unit ball B, the Green's function for B is

na(x)
GP{x) = ^f-U{x)

llp-x||p|| llp-xll

Figure 8.17
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Calculate the precise form of Theorem 8.7 (known as Poisson's formula for

the ball) if h is harmonic on the unit ball

v if ., ,
l -

Up II2
Jn

^^L^IIPlKIIP-xll)^'llxll

42. Solve Dirichlet's problem for the ball.

43. Solve Neumann's problem for the ball.

44. Find the steady state temperature distribution in the ball if the

surface temperature on the sphere is maintained at

(a) cos <f>, </> is the angle between the point and the north pole.

(b) A{x + 2y), A a constant.

(c) x2 + y2-2z2.

(d) cos 40 sin 2</>, 0, </> spherical coordinates.

45. Suppose D is a domain for which there exists a Green's function Gp

for all p e D. Show that if p # p'

GP{p') = GP.{p)

{Hint: Show, by Green's identity that the integral

dGp. 8GP
Gp

8N
Gp'

8N
dS0 =

is the same as

8G.1

dS[ \g ^
L-- L 8N

8GP

g^1n

where B, B' are balls of radius e centered at p, p', respectively. Now, using

the fact that

1
Go = -

+ harmonic
r

compute the limits as p
-> 0.)

46. Suppose D, D' are domains with Green's functions GD, GV and

D => D'. Show that for p e D'

Gd,p{x)>lGd.p{x) allxinZ)'

47. Show that for h harmonic in the ball of radius R centered at p,

8h
p

on

J||x-,ii=ji oN
dS = 0
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48. Show that the function h defined on the upper half space D = {z > 0}
is dissipative if

||x||2//(x) \\x\\2Vh{x)

are bounded.

49. Show that if h is harmonic and dissipative in the upper half space

and zero on the z = 0 plane, then h is identically zero.

50. Suppose that h{x, y) is dissipative on the plane. Prove that there

exists a unique dissipative function u continuous on the upper half space

{z > 0} and harmonic for {z > 0} which attains the boundary values h. u is

given by

zo f00 r h{x,y)

u^y'^=2)0 I [(x-Xo)2 + (y-yo)2 + Zo2P'2^

51. Find the steady state dissipative temperature distribution on the

upper half plane if the temperature on the plane z = 0 is maintained at

exp(x2 + y2)-1.

8.7 Summary

A fluidflow is given by a C1 i?3-valued function <b(x0 , /) defined for x0 in

some domain D in R3 and / on an interval in R about the origin. <b has these

properties:

(i) j)(x0 , 0) = x0 all x0 6 D.

(ii) For fixed /, x0 - <b(x0 , /) is one-to-one and has a nonsingular differ

ential.

The vector field

d<b(x0 , 0
v(x, /) =

dt
X0

= (t>'i(X,t)

is the velocity field of the flow. The flow is steady if v is independent of /.

If y = {vlt v2 , v3) is a differentiable vector field, its divergence is the function

dt>i dv2 dv3

dx1 dx2 dx3
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equation of continuity. If v(x, /) is the velocity field of a flow and

p(x, /) is its density, the law of conservation of mass implies

dp dp _ dp
- + divO>v) =

-

+ S>i-i + pdivv = 0

A flow is incompressible if the same mass always occupies the same volume.

The necessary and sufficient condition for this is div v = 0, where v is the

velocity field of the flow. The fluid is incompressible if and only if the

density at a particle is constant under all flows of the fluid.

INTEGRATION UNDER A COORDINATE CHANGE. Let (m, V, w) = F(x, y, z) be

a change of coordinates taking a domain D onto the domain A. If g is

continuous on D,

I* g{x, y, z) dx dy dz = | g{ x(, v, w)
Jn JA

det(w) du dv dw

{u, v, w)

If v is the velocity field of a flow, the circulation around a curve C is defined

as

circ(C) = f <v, T> ds
Jr.

If we fix the point x0 and vector n at x0 let Cr be the circle in the plane

perpendicular to n of radius r centered at x0 . The curl of the flow about n

at Xq is

... circ(Cr)
curl v(x0 , n) = lim

2

r-o r

If v = {v1, v2, v3) define

'dv2 dv3 dv3 dv1 dv1 dv2^/dv2 dv3 dv3 dv1 dv1 _5t/\
Cmly=\oV3~dx2~'olc1~dT3'dx2 dx1)

Then curl v(x0 , n) = <curl v(x0), n>. A flow is irrotational if curl v = 0.

A surface patch in R3 is the image of a domain D in R2 under a C1 map

x = x(w, v) with these properties:

(i) x is one-to-one
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(ii) the vectors x = dx/du, xv = dx/dv are independent, (m, v) are called

parameters or coordinates for the surface patch. A surface is a set E in R3

which can be covered by surface patches. The tangentplane to E is the plane
spanned by the vectors x , x (this is independent of the particular co

ordinates). The normal N to a surface is a unit vector defined for each point
and orthogonal to the tangent plane there.

The form

ds2 = Edu2 + 2Fdu dv + G dv2

defined on a surface E with coordinates {u, v) by

=<x,xu> F=<x,x> G = <x,x>

is the first fundamental form of the surface. The parametric curves are

orthogonal ifF = 0. The length of a curve on E given by u = u{t), v = v{t) is

r, r\Jdu\2 ^^dudv ^(dv\2yi2 ,

/* =

/[*(*) +2Fd7Jt + G[Tt)\ dt

A geodesic is a curve of minimal length. If y is a geodesic on E, then at any

point p on y the normal to y is orthogonal to the tangent plane of E.

The area of a domain D on a surface is defined by

| dS = I ||x x x|| dM dt)
"d 'd

The integral of a continuous function /defined on D is

f /dS = f /||XU X Xj dM dv
JD JD

These definitions are independent of the parameters chosen.

If E is an oriented surface and v is a vector field defined around E, the

flux of v across E is

!<v,N>dS
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stokes' theorem. If v is a C1 vector field defined in a domain U, and E is

an oriented surface in U and D is a regular domain on E, then

f <v, T> ds = f <curl v, N> dS
'dD JD

divergence theorem. If v is a C1 vector field defined in a neighborhood
of a regular domain Z> in R3 then, with the exterior normal orientation on dD,

f <v, N> dS = f div v dF
JdD JD

green's identities. Let /, g be two C2 functions defined on a regular
domain D. Then

f /||dS= f UAg + <V/, V<?>] dV
JSd oN JD

dirichlet's principle. Let D be a regular domain in R3 and suppose /is
a continuous function on D. Let My be the class of C2 functions on D with

boundary values given by/.

(i) If there is a harmonic function in Ms ,
it minimizes the energy integral

E2{u) = j \\Vu\\2 dV

(ii) If there is a C2 function which minimizes the energy integral, it must

be harmonic.

FURTHER READING

In order to continue the study of the divergence theorem and further related

topics one must turn to the notations and ideas of differential forms. The

small book

M. Spivak, Calculus on Manifolds, W. A. Benjamin, Inc., New York, 1965,

gives a clear and direct account of this subject. The book

H. K. Nickerson, D. C. Spencer, and N. Steenrod, Advanced Calculus,

D. Van Nostrand Company, New York, 1957, was the first to give a complete

account of this subject on an advanced calculus level. For a more recent

account, with a chapter on potential theory in R", see

L. Loomis and S. Sternberg, Advanced Calculus, Addison-Wesley, Reading,

Mass., 1968.
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Other references are

M. E. Munroe, Modern Multidimensional Calculus, Addison-Wesley,

Reading, Mass., 1963.

E. Butkov, Mathematical Physics, Addison-Wesley, Reading, Mass., 1968.

For further study of differential geometry we recommend

S. Struik, Lectures on Classical Differential Geometry, Addison-Wesley,

Reading, Mass., 1950.

H. Guggenheimer, Differential Geometry, McGraw-Hill, NewYork, N.Y.,

1963.

MISCELLANEOUS PROBLEMS

52. Suppose that F is a C1 function defined in a neighborhood of p0 in

R3 such that F(p0) = 0 and dF{p0) # 0. Show that the set = {p : F(p) = 0}

is a surface patch in some neighborhood of p0 . {Hint : Choose coordinates

x, y, z so that the forms dF{p0), dx{p0), dy{p0) are independent. Then the

transformation F(p) = (x(p), y(p), F(p)) is invertible. If G is the inverse

to F, the function

</>{u, v) = G{u, v, 0)

parametrizes .)

53. A family of surfaces in a domain D in R3 is given implicitly by the

equation

F{p) = c (8.64)

where F is C1 in D and dF{p) =^= 0. For each c, the set (8.64) determines a

surface. Show that the vector field VF is the velocity field of a flow whose

path lines intersect each surface orthogonally.

54. Find the family of curves which are orthogonal to these families of

surfaces :

(a) x2 + 2y2 + z2 = c. (c) x2 + y2 = c{z + c).

(b) z2x2 = c2 (d) z = c cos y.

55. Given a family F of curves in space, there may not exist a family of

surfaces orthogonal to F. If say, v is a vector field tangent to the family F

and {F{p) = c] is the family of orthogonal surfaces, show that VFmust be

collinear with v. The condition that v must be collinear with a gradient

must be satisfied in order for the path lines associated to v to have an

orthogonal family of surfaces. Show that this condition may be written

<curl v, v> = 0.

56. Show that the family of path lines of the helical flow

(x, y, z) = (x0 cos t + y0 sin /, x0 sin t + y0 cos /, z0 + /)

does not admit an orthogonal family of surfaces.
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57. Show that if the vector field v is conservative the family of surfaces

{II(p) = c], where II is a potential for v is orthogonal to the path lines.

58. Show that, although the vector field

v(x, y, z) = (yx, y, 0)

is not conservative, the path lines of its associated flow does admit a family
of orthogonal surfaces.

59. Suppose that D is a star-shaped domain in R3 centered at the origin.
That is, if p e D, then so is the line segment joining 0 to p in D. Suppose
that v is a C1 vector field defined on D such that div v =0. Define the

vector field u by

u(p) = f [v(/p) x rp] dt
Jo

Show that curl u = v. {Hint: Recall Poincare's lemma (see Theorem 7.5);

this is just a generalization. Differentiate under the integral sign, use the

condition div v = 0 and then integrate by parts.)

60. Suppose that u is a C1 vector field defined in a neighborhood of a

sphere S. Show that

f <curl u, N> dS = 0
Js

(Use Stokes' theorem one hemisphere at a time.)

61 . Every curl-free vector field defined on R3 {0} is a gradient ; however

there is a divergence-free vector field defined there which is not a curl. For

example, take

Vo(P) =i

Then div v = 0, but if S is a sphere centered at the origin

f <Vo,N>dS = 477

Js

so by Problem 60, v0 is not a curl. It can be shown that if v is any divergence

free field defined in R3 - {0}, there is a vector field u and a constant c such

that

v = curl u + cv0

Can you suggest how to define c and u?
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Normal Curvature

62. Let be a surface patch in R3 coordinatized by x = x(h, v). Let

N be the normal to so chosen that xu -*x ->N is right handed. N can

be viewed as a differentiable function of u, v. For p on , dN{p) is thus

an jR'-valued linear map of R2. By defining

8N

dN(/>)(xu) = (/>)

0N

dN(/>)(x) = go

we may consider dN as a mapping of the tangent space 7*() into J?3.

(a) Show that the range of dN(p) is orthogonal to N(p). {Hint: N

is a unit vector.)

(b) Because of (a) dN(p) can be considered as a linear transformation

of r() to T{Z)P . Show that dN(p) is symmetric :

<dN(p)v, w> = <v, rfN(p)w>

{Hint: You need only show that

<dN(p)(xn), x> = <x, dN(p)(x)

(c) Show that rfN(p)(v) is kn{\) when rN(v) is the normal curvature

(see Problem 25) of the curve of intersection of the plane through N and

v with .

Since dN(p) is symmetric on T()p ,
it has two real eigenvalues and the

corresponding eigenspaces are orthogonal. The eigenvalues are called

the principal curvatures of at p, and the eigendirections are the principal

directions.

63. The secondfundamental form on a surface is the form

II(v) = <dN(p)v, v> for v 6 T()(p)

Show that II can be expressed as

II = L du2 + 2M du dv + N dv2 (8.65)

where

_/SN 8x\
L =

\8u~'~8u)
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/N Sx\/dN dx\

\ 8u
'

dv/ \ dv
'

du/

/eN sx\

64. Compute the second fundamental form and find the principal direc
tions on these surfaces :

(a) x2 + 2y2 + z2 = 1

(b) 2y=x2

(c) x2 y2 = z2

(d) x2-y2 + z2=0

65. (Rodriques' Formula) Show that a curve r on a surface is tangent
to a principal direction at every point if and only if dN + kn dx = 0 along r.

(Such curves are called lines ofcurvature.)
66. Find the lines of curvature on the surface :

(a) is the cylinder given by x{u, v) = (cos u, sin u, v).

(b) is the torus x{u, v) = (2 + cos )cos v, (2 + cos u = (2 + cos u)
cos v, (2 + cos )sin v, sin ).

(c) is the sphere x2 + y2 + z2 = 1 .

67. A point p on a surface is called an elliptic point if the principal

curvatures have the same sign, a hyperbolic point if the principal curvatures

have different signs and a parabolic point if one principal curvature is zero.

Find examples of all three kinds of points on a torus. Show that p is

elliptic, hyperbolic, parabolic as LN M2 > 0, < 0, =0.

68. Show that at a hyperbolic point in a surface intersects its tangent

plane in two curves with zero normal curvature.
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